
16 Heavy Flavors

As shown in Fig. 15.15, the energy point ' 1 GeV separates the QCD scale
into regions of large and small running coupling αs(µ), or equivalently, of
low and high energy, or light and heavy particles. The world of heavy flavors
begins with the charm quark and the τ lepton and extends to the bottom and
top quarks in the fermionic sector. The list of heavy particles in the standard
model also includes the weak bosons W± and Z0, and the neutral Higgs boson.
Of these, only the Higgs boson is still not experimentally observed at present.

Once a particle is produced, its decay provides the traditional way to de-
termine its intrinsic properties and its characteristic interactions with other
particles. Let us recall a few examples: P and CP violations were revealed
by K+ and K0 decays; the extremely narrow width of the heavy J/ψ sig-
naled its presence; charm was discovered by its typically dominant decay into
strangeness; the τ± lepton pair was recognized by the distinctive signature
e±µ∓ left by its leptonic decays.

For the B meson studied in this chapter, its decays are particularly
interesting for the following reasons:

(i) due to the QCD asymptotic freedom and the large masses and mo-
menta released by heavy flavors, electroweak and strong interactions are
closely correlated. Their interplay in perturbative calculations can be fur-
ther improved by the renormalization group methods. The first section is
devoted to the QCD renormalization of weak interactions which provides a
basis for nonleptonic decays.

(ii) a new symmetry – called heavy flavor symmetry (HFS) – appears in
an effective Lagrangian derived from QCD in the limit M → ∞ (M being
the heavy quark mass). This symmetry allows the determination of the form
factors involved in the exclusive decay modes. Some of these predictions play
a crucial role in determining the CKM matrix elements. The 1/M expansion
provides a solid theoretical framework for the spectator model in which only
the heavy quark undergoes decay while the light constituents are spectators.
Semileptonic decays are the best way to understand many properties of the
b-flavored hadrons and to measure Vcb and Vub.

(iii) the physics of heavy particles has their impact on various quantities
through their quantum effects in loops. For instance, from the observed B0–

B
0

mixing, a lower bound of the top mass is predicted before its discovery.
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(iv) the physics of heavy flavors plays an essential role in CP violation
too, and may open windows on the mechanism of the gauge symmetry break-
ing, i.e. the Higgs sector.

16.1 QCD Renormalization of Weak Interactions

In (13.1) and (13.2), the effective Lagrangian for nonleptonic (or hadronic)
decays of hadrons is given in the most general form by

GF√
2
HµH†

µ , with Hµ =
∑

Q,q

VQqH
Qq
µ , HQq

µ = Qγµ(1− γ5) q . (16.1)

This universal effective Lagrangian governs the hadronic decays of all flavored
hadrons, from strange to charm and bottom. Unflavored hadrons (like the
neutron and the pion) weakly decay only in semileptonic modes by the lack
of a sufficiently large phase volume, while the top quark directly decays into
the real W boson and the b quark, t→ W + b, without passing by (1). As
for the semileptonic decays of hadrons, they are governed by

GF√
2

[
Hµ L†

µ + LµH†
µ

]
, (16.2)

where Lµ is the leptonic current given by (13.2).
In weak decays of hadrons, we note the prominent role of the quark

current Hµ. Since quarks interact through QCD, the effect of the hard (en-
ergetic) gluons on Hµ alone, as well as on the product HµH†

µ, must be taken
into account. This is called the QCD renormalization of weak interactions
to which this section is devoted. The reason for considering hard gluons is
that they can be treated within the QCD perturbative framework, due to
the asymptotic freedom. Nonperturbative soft gluons effects related to form
factors will be studied within the framework of HFS in Sect. 3.

Let us start by considering as an example the hadronic decays of the
B mesons (bq bound states) into charmed and unflavored hadrons. These
modes are described by the decay b → c + d + u (Fig. 16.1). This is the
spectator model where the b constituent of the B undergoes decay while the
light q constituent is a spectator.
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Fig. 16.1. b → c + d + u at the electroweak tree level

The corresponding effective Lagrangian is the product of the two Cabibbo-
favored currents VcbH

bc
µ and V ∗

udH
µ†
ud

i

( −ig

2
√

2

)2

VcbV
∗
ud

−i

k2 −M2
W

(Hbc
µ ) (Hµ†

ud) −→
k2�M2

W

GF√
2
VcbV

∗
udOA,

where OA = (Hbc
µ ) (Hµ†

ud) = [c γµ(1− γ5) b] [dγµ(1− γ5)u] . (16.3)
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16.1.1 Corrections to Single Currents

Before considering the gluonic corrections to the product HµH†
µ which gov-

erns nonleptonic decays, let us discuss the QCD effect on the single currents
Hµ; these corrections concern also the semileptonic modes. In fact, we are
already familiar with the latter in Chap. 14 which treats the correction to
Hµ

ud (we call it from now on the ‘right vertex’ [ud]). The corrections apply
to Hbc

µ , the ‘left vertex’ [bc] too.
For each of these two vertices ([ud] or [bc]) taken separately, there are in

all five Feynman diagrams shown in Fig. 14.2 (virtual gluons) and Fig. 14.3
(real gluons) that contribute to the corrections. They are symbolically rep-
resented by a • in Fig. 16.2 for the right vertex and in Fig. 16.3 for the left
vertex.

........................................................................................................................................................................ ................

b

c

............
...........
............
............
...........
............
...........
............
............
...........
.

...........
............
............
...........
............
...........
.................
................

d

u

...........
...........
............
...........
...........
............
...........
...........
............
...........
...........
............
......

..............................................................................................................................................

•.................................
............
...........
...........
....................
................

............
...........

...........
...........

............
...........

...................................

•.....
...................

.......
...................

.......
...................

.......
...................

.......
...................

.......
...................

.......
...................

.......
...................

..................
................

...................
.......
...................

.......
...................

.......
...................

.......
...................

.......
...................

.......
...................

.......
...................

..

W

•••• • ≡ 5 diagrams of Figs. 14.2 and 14.3

at the right vertex [ud]

=⇒
{

+αs

π

}
correction to the rate

••••••

Fig. 16.2. QCD corrections to the right vertex [ud] in b → c + d + u

For the right vertex [ud] part, the one-loop QCD correction to the rate

of b→ c + d + u is equal to the one found in τ− → ντ + d + u, i.e.

Nc
G2

FM
5

192π3
|VcbV

∗
ud|2

{αs

π

}
≡ Nc Γ0|VcbV

∗
ud|2

{αs

π

}
, (16.4)

where Γ0 = G2
FM

5/(192π3) as given by (13.21) is the width of the fermion b
of mass M decaying into three massless fermions c, d, and u. For massive c, d
and u quarks, the rate Γ0 is to be multiplied by the phase space suppression
factor I(x, y, z) as given by (13.63). The rate Γ0 and the coefficient |VcbV

∗
ud|2

are implicitly understood in the following. The factor αs/π represents the
one-loop QCD correction to the right vertex [ud] (see 14.83).

To convert the ud pair into hadrons in the inclusive rate τ− → ντ +
hadrons (or B → hadrons), the color factor Nc = 3 must be included in (4)
[see also (14.83) and (69) below].

For massive d and u quarks associated with this right [ud] vertex, the
correction becomes larger than αs/π [see the function K(x, y) in Table 14.1].
In b→ c + d + u, for any fixed value of the c quark mass of the left part, the
right vertex correction grows with the increasing masses of its associated u,
d quarks and is always positive. This dynamical enhancement is completely
different from the purely kinematic phase space suppression effect due to the
c quark mass. For instance, in b → c + s + c, the s c pair replaces the d u
pair, the correction to the right vertex [cs] is considerably larger than αs/π
because the s and c masses largely exceed the d and u masses.
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The QCD corrections to the left vertex [bc] shown in Fig. 16.3 can be
computed with the five similar diagrams as in Chap. 14. The result

−2

3

αs

π

[
π2 − 25

4

]
= −2.41

αs

π
(16.5)

is taken from the electromagnetic corrections to µ− → νµ + e− + νe already
given by (13.27), with the substitution e2 → 4

3
g2
s .

As noted in Chap. 14, the factors π2 – coming from the second derivative
of the Γ(x) function in both real and virtual gluon diagrams – do not exactly
cancel each other in this left vertex [bc] (while they do in the right vertex),
so we have the π2 term in (5).

The formula (5) is valid only for massless c, u, and d quarks in the
final state. When quarks are massive, the result while remaining negative is
reduced in magnitude. For instance, with mc = 0.3M and mu = md = 0, the
QCD correction to the rate is −0.87 (αs/π) instead of −2.41 (αs/π), always
with the multiplicative factor Γ0|VcbV

∗
ud|2.
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•••• ≡ 5 similar diagrams of Figs. 14.2 and 14.3

at the left vertex [bc]

=⇒
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αs

π [π2 − 25
4 ]
}

correction to the rate

••••••

Fig. 16.3. QCD corrections to the left vertex [bc] in b → c + d + u

The overall corrections to nonleptonic decays b→ c + d +u coming from
the left and right vertices are (the common factor Nc Γ0|VcbV

∗
ud|2 in (4) and

(5) is implicit):

−2αs

3π

(
π2 − 25

4

)
+
αs

π
=
−2αs

3π

(
π2 − 31

4

)
= −1.41

αs

π
. (16.6)

This formula is valid for the three massless quarks in the final state. For
mc = 0.3M and mu = md = 0, the overall corrections are no more (6)
but change into [−0.87 + 0.52](αs/π) = −0.35 (αs/π). The −0.87(αs/π)
factor comes from corrections to the left vertex [bc] as mentioned above,
while the 0.52 (αs/π) comes from corrections to the right vertex [ud]. The
purely kinematic phase space suppression effect of the c quark mass on the
correction to the right vertex [ud] is given by 0.52 (αs/π), instead of (αs/π)
when c, u, and d quarks are massless.

In the decay b→ c + s + c (Fig. 16.4) responsible for the mode B →
J/ψ + K (Fig. 16.9), we note that the quark mass effect in QCD correction
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is much more important1. Instead of the negative value −1.41 (αs/π) for
the three massless quarks in the final state as given by (6) , the mass effect
reverses the sign resulting in an overall positive sign +3.02 (αs/π). This is
because of the massive s and c quarks in the right vertex [cs] which replace
the d and u [again see the function K(x, y)]. This B → J/ψ + K mode is
particularly important for the study of CP violation in B mesons (Sect. 5).
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Fig. 16.4. QCD corrections to the left and right vertices in b → c + s + c

These two types of corrections involving the single currents Hµ apply also
to the semileptonic modes. For instance, the right vertex [q2q3] correction
which occurs in τ → ντ + q2 + q3 is already studied in Chap. 14. The
left vertex [bc] correction, which occurs in the b → c + e− + νe decay and
describing the inclusive semileptonic decays of B mesons, is given below by
(56). They are QCD corrections that have no large logarithmic factors, in
contrast to the large logarithmic corrections to the product HµH†

µ that we
are considering now.

16.1.2 Corrections to Product of Currents

A new type of QCD correction applies to the product Hbc
µ H

µ†
ud in which one

gluon is exchanged between the two vertices [bc] and [ud] in all possible ways.
This correction concerning only hadronic decays has no equivalent in semilep-
tonic modes since gluons are insensitive to leptons. Shown in Fig. 16.5a, the
gluon connects the c to the d quark, and in Fig. 16.5b the c to the u quark.
There are four diagrams in all, the other two are similar (with a gluon ex-
changed between b and u and between b and d) and are not shown.

Our first task is to compute these diagrams. The loop integral with one
gluon exchanged between the c and d quarks in Fig. 16.5a yields the term
denoted by Ic↔d, which is given by

i

( −ig

2
√

2

)2

(−igs)
2

∫
d4k

(2π)4
−i

k2

−i

k2 −M2
W

[d T j γλ
i(− 6k +md)

k2 −m2
d

γµ(1− γ5) u]

×[c T j γλ
i(6k +mc)

k2 −m2
c

γµ(1− γ5) b] , (T j = 1
2λ

j .(16.7)

1 Ho-Kim, Q. and Pham, Xuan-Yem, Ann. of Phys. (N.Y.) 155 (1984)
202 ; Bagan, E., Ball, P., Braun, V. M. and Gosdzinsky, P., Phys. Lett.
342B (1995) 362; Neubert, M. and Sachrajda, C. T., Nucl. Phys. B483

(1997) 339.
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where the external momenta are taken to be zero but the integration variable
k2 is not neglected (in contrast to (3)). With md ≈ 0, the integral (7) is
rewritten as

Ic↔d =
−iGF g

2
s√

2

∫
d4k

(2π)4
1

k2

M2
W

k2 −M2
W

1

k2 −m2
c

1

4

8∑

j=1

[d (T j)ef γ
λ γρ γµ(1− γ5)u] [c (T j)gh γλ γρ γµ(1− γ5) b] , (16.8)

where the color indices e, f, g, h run from 1 to 3, and 1/4 comes from kσkρ →
(1/4)k2gσρ (while the summation over the SU(3) index j = 1, . . . , 8 in matrix
T j = λj/2 is understood). Writing the product of the three propagators in
(8) as an integral over the Feynman auxiliary variables x, y, and applying
formulas in the Appendix, we obtain

∫
d4k

(2π)4
1

k2

M2
W

k2 −M2
W

1

k2 −m2
c

=
−i

16π2
log

M2
W

m2
c

(16.9)

after integration first over
∫

d4k, then over y and x. This result uses (7)
in which the external momenta are neglected. If these momenta are not
neglected, the correct lower limit of the logarithm in (9) actually must be set
equal to the external momenta which is dominated by the decaying b quark,
i.e. log(M2

W/m
2
c) should be replaced by log(M2

W/M2).
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Fig. 16.5a,b. QCD corrections to nonleptonic decays through the product HµH†
µ.

There are two more graphs with a gluon between b and u, and between b and d.

This lower limit fixed by the mass M of the decaying particle is easy to
understand from the diagram with one gluon exchanged between the b and d
(or u) quarks, i.e. in (8), we replace mc by M in their respective propagators.

Let us consider now the second line of (8), which is

{XY } ≡ 1

4

8∑

j=1

[dT j γλ γρ γµ(1− γ5)u] [c T j γλ γρ γµ(1− γ5) b] .
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We have already met this product without the color matrix T j in (11.21) and
(11.24). Due to (11.23), we have

[dγλ γρ γµ(1− γ5)u] [c γλ γρ γµ(1− γ5) b] = 16OA , (16.10)

where OA is given in (3). However, QCD, via the color matrix T j , drastically
changes the dynamics. To simplify notations, let [d (T j) γλ γρ γµ(1 − γ5)u]
stand for

[
d (T j)u

]
without the Dirac matrices. Similarly the second factor

in (8) is written as
[
c (T j) b

]
. Then from (11.88) we have

8∑

j=1

[
de T

j
ef uf

] [
cg T

j
gh bh

]
=

1

2

[
de uf

]
[cf be]−

1

6

[
de ue

]
[cg bg] . (16.11)

Now we reintroduce the Dirac matrices γλ γρ γµ(1− γ5) and γλ γρ γµ(1− γ5)
into the right-hand side of (11), and using again (11.23), we gain a factor of
16 as in the right-hand side of (10). The final result is

1

4
{XY } =

1

2
[de γ

µ(1− γ5)uf ] [cf γµ(1− γ5) be]

−1

6
[de γ

µ(1− γ5)ue] [cg γµ(1− γ5) bg] . (16.12)

The second line of the above equation is the product of two color-singlet
quark currents, and is nothing but the operator −1

6OA in (3). The first line
is the product of two color-non-singlet quark currents having the familiar
structure (V − A)× (V −A). This naturally suggests the use of the Fierz
transformation which let the structure (V − A) × (V − A) stay intact (see
Appendix). The minus sign from the Fierz rearrangement, when combined
with the minus sign from interchanging the order of the anticommuting quark
fields, yields an overall positive sign in

[de γ
µ(1− γ5)uf ] [cf γµ(1− γ5) be] = [de γ

µ(1− γ5) be] [cf γµ(1− γ5)uf ] .

The right-hand side of the above equation is a product of two color-singlet
currents. It is symbolically written as (d b) (c u) and replaces now the first
line of (12). Hence the quantity {XY } can also be expressed in terms of two
operators, each being the product of bilinear color-singlet quark currents:
the original one OA ∼ (du) (c b) in (3) and a new operator OB ∼ (d b) (cu)
emerging from QCD corrections. We have

{XY } = 2 OB −
2

3
OA, with OB = [dγµ(1− γ5) b] [c γµ(1− γ5)u].(16.13)

The two color-singlet currents (d b) and (c u) in OB should not be confused
with the flavor-changing neutral currents (FCNC) d ↔ b and c ↔ u which
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never exist because of the GIM mechanism. These apparent FCNC forms
arise simply from the Fierz rearrangement. Putting together (8), (9), and
(13), we get the contribution of the diagram in Fig. 16.5a:

Ic↔d =
GF√

2

{
αs

4π
log

M2
W

M2

}[
2

3
OA − 2OB

]
. (16.14)

The contribution Ic↔u from the diagram in Fig. 16.5b (with the gluon ex-
changed between the c and u quarks) is similarly calculated. Compared with
Ic↔d in (7), there are two modifications, as seen below:

i

(−ig

2
√

2

)2

(−igs)
2

∫
d4k

(2π)4
−i

k2

−i

k2 −M2
W

[
d γµ(1− γ5)

i(+ 6k +mu)

k2 −m2
u

γλ T j u

]

×
[
c T j γλ

i(6k +mc)

k2 −m2
c

γµ(1− γ5) b

]
. (16.15)

With the outgoing u replacing the outgoing d quark, from (7) to (15) we note
an interchange (+ 6k↔ − 6k) in their propagators. So we obtain

[dγµ (1− γ5) γ
ργλ u] [c γλ γρ γµ(1− γ5) b] = 4OA .

The result is Ic↔u = − 1
4
Ic↔d, thus

Ic↔d + Ic↔u =
3

4
Ic↔d =

GF√
2

{
αs

4π
log

M2
W

M2

} [
1

2
OA −

3

2
OB

]
. (16.16)

The two remaining contributions Ib↔u and Ib↔d are computed exactly as in
(7) and (15). They are respectively equal to Ic↔d and Ic↔u, such that the
total contributions (from gluon exchanged in all possible ways between the
left [bc] and right [ud] vertices) are doubled. Thus

Bare Electroweak Renormalization by QCD

GF√
2
OA =⇒ GF√

2

{
αs

4π
log

M2
W

M2

}
[OA − 3OB] . (16.17)

Compared with the QCD uncorrected (3), the effective operators for nonlep-
tonic decays are modified as follows:

OA =⇒ cAOA =

(
1 +

αs

4π
log

M2
W

M2

)
OA ,

0 =⇒ cBOB = −3

(
αs

4π
log

M2
W

M2

)
OB . (16.18)

The detailed calculation is illustrative. Not only does QCD renormalize the
original operator OA, it also brings in a new operator OB. The operator OB,
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which is absent when QCD is neglected, now emerges when gluons enter.
Starting from zero, we get −3 [αs/4π](logM2

W/M
2)OB.

Furthermore, there is a logarithmic enhancement log(M2
W/M2) in the

corrections to the product HµH†
µ not found in the corrections (4) and (5)

to the current Hµ itself. (Hence the adjective ‘leading’ to contrast with
nonleading corrections.) This leading logarithmic enhancement concerns only
the product HµH†

µ, i.e. only nonleptonic weak decays. The reason for this
enhancement when the gluon in Fig. 16.5 is parallel to or crosses the weak
gauge boson W is simple. The logarithmic ultraviolet divergence in the vertex
corrections to the single current Hµ is canceled by the same type of divergence
as in the quark self-energy (Chap. 14). Whereas for the product HµH†

µ, the
loop integrals of the diagrams in Fig. 16.5 are convergent, we do not need
counterterms here, and so the logarithmic enhancement is not removed.

The method just obtained for the b→ c+ d + u can be immediately
extended to the nonleptonic decays of all other flavored hadrons described
by Q→ q1 +q2 +q3, for instance s→ u+ d + u and c → s+ u + d. The only
change is in the lower limit (collectively denoted now by µ) of the logarithm
log(M2

W/µ
2) in (17). Since the upper limit is always the W mass, the mass

scale µ for the lower limit is naturally set equal to the mass of the decaying
particles, such that the scale µ is ms (mc) for strange (charm) decaying
quarks. The logarithmic enhancement is more pronounced in strange than
in charm (and a fortiori in bottom) nonleptonic decays.

Once we get the effective hadronic weak LagrangianHµH†
µ renormalized

by perturbative QCD, we can examine the correction to the decay rate. In
Chap. 14, we remark that because of the interference – between the weak-
interaction tree amplitude of Fig. 16.1 and the QCD correction to the current
Hµ (Figs. 16.2–3) – we get the O(αs) correction to the rate as given by (4)
and (5). This interference no longer applies to the product HµH†

µ. Since

the color matrix T j in the diagram of Fig. 16.5 is traceless, the interference
between the latter diagram and the tree diagram in Fig. 16.1 vanishes, so we
have to square the amplitude of (17) and get O(α2

s) corrections to the rate.
For the product HµH†

µ we gain a logarithmic enhancement but we have a
smaller α2

s factor in the corrected rate.

16.1.3 Renormalization Group Improvement

In (17), the logarithmic enhancement log(M2
W/m

2
Q) for the decaying Q quark

is about 6 for bottom (Q=b) and 10 for strange (Q=s) particles. The per-
turbative correction to the decay amplitude is ∼ αs log(M2

W/m2
Q), of order 1,

and so higher-order corrections [αs log(M2
W/m

2
Q)]n cannot be ignored. These

αns corrections correspond to multiple hard gluons exchanged between the two
vertices. The renormalization group method discussed in Chap. 15 and illus-
trated by Fig. 15.10 is particularly adapted to the situation. While it is an
impossible task to compute all individual Feynman diagrams, the renormal-
ization group equation can prduce the sum of the leading logarithmic terms
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to all orders of αs. Let us rewrite the QCD effects on OA taken from (17):

OA =⇒ OA +

{
αs

2π
log

(
MW

µ

)}
[OA − 3OB] , (16.19)

and note that there is always a mixing between the two operators OA and
OB. The gluonic corrections to OB yield a similar result:

OB =⇒ OB +

{
αs

2π
log

(
MW

µ

)}
[OB − 3OA] . (16.20)

Local operators appear often in quantum loop calculations (see Chap. 11
for box and penguin diagrams), and if they have the same dimension (as in
the case of OA and OB with the dimension six), they are usually mixed. We
would like to find combinations of operators that are unmixed by QCD. From
(19) and (20), we remark that the operators

O± = 1
2 [OA ±OB] (16.21)

satisfy this requirememt. They are form-invariant, i.e. unmixed. Using (19)
and (20), we note that the bare O± are multiplicatively renormalized by QCD
with the coefficient c± :

O± =⇒ c±O± , where c± = 1 + d±

[
αs

π
log

(
MW

µ

)]
, (16.22)

with d+ = −1 and d− = +2. Then the right hand side of (19) becomes
ONL = c+O+ + c−O−.

We can go farther by summing up all [αs log(MW/µ)]n terms with the
renormalization group equation. Like the bare and renormalized Green’s
functions, the operators in field theories can be defined as bare and renor-
malized operators through their matrix elements. Green’s function associated
with the operator O± can be constructed from the four quark fields partici-
pating in the decay of Q → q1 + q2 + q3. It is defined as

〈0 |O± q1 q2 q3Q | 0〉 , (16.23)

where the creation and destruction operators of the quark fields applied to
the vacuum 〈0| and |0〉 yield the matrix element of O±. Therefore, through
their associated Green’s functions, the renormalized operators also obey the
Callan–Symanzik (CS) equation, which states that a change in the scale
µ must be compensated by their anomalous dimensions through the run-
ning coupling constant αs(µ), leaving the bare operators independent of µ.
We may define the corresponding rescaling factor ZO(µ) of any operator O
similarly to the field-strength renormalization functions Z(µ) which we are
familiar with in Chap. 15. Let us define

Obare = ZO(µ) Oren .
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For the problem on hand, the calculation of ZO±
(µ) is already performed.

To see how ZO±
(µ) is calculated, let us return again to the logarithm in (19)

and note that at the scale µ = MW, QCD does not bring in any correction
to the weak-interaction operators from which we start. The cutoff Λ [or
Γ(2 − n

2 )] in the regularization of loop integrals is naturally replaced with
MW in the case considered here. It can also be seen by putting MW →∞ in
(9), which becomes

−
∫

d4k

(2π)4
1

k2

1

k2 −m2
c

=
−i

16π2

Γ(2− n
2 )

µ4−n
,

using the familiar dimensional regularization method. Comparing the above
equation with (9), we note that log(M2

W/µ
2) is replaced with Γ(2− n

2 )/µ4−n.
From the high mass cutoff MW going down to the scale µ = mQ of the

decay process Q→ q1 + q2 + q3, the bare operators O± are multiplicatively
renormalized by c± according to (22). So the corresponding ZO±

(µ) are
nothing but c±(µ). According to (15.44), the anomalous dimensions γ±(gs)
which govern the evolution of the operators O±(µ) can be obtained by taking
the derivative of the function logZO±

(µ). We have, from (22),

γ±(gs) ≡ µ
∂ logZO±

(µ)

∂µ
= µ

∂ log c±(µ)

∂µ
= −

[
d±

αs(µ)

π

]
. (16.24)

The fact that the product c±(µ)Oren
± (µ) = Obare

± is independent of µ implies

{
µ

d

dµ
+ γ±

}
Oren

± (µ) = 0 ,

{
µ

d

dµ
− γ±

}
c±(µ) = 0 .

The latter may be rewritten as

d

d log(µ/MW)
c±(µ) = γ±(gs)c±(µ) , (16.25)

with the initial condition c±(MW) = 1. This differential equation is easy to
solve. When we put into (25) the explicit expression (24) of γ±(gs) written
in terms of the QCD running coupling αs(µ) as given by (15.83), i.e.

αs(µ) =
2π

b0 log(µ/ΛMS)
, where b0 =

11

3
Nc −

2

3
Nf ,

then we find that the solutions of (25) are

c±(µ) =

[
log(MW/ΛMS)

log(µ/ΛMS)

]2d±/b0
=

[
αs(µ)

αs(MW)

]2d±/b0

=

[
1 + b0

αs(µ)

4π
log

M2
W

µ2

]2d±/b0
. (16.26)
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This expression of c±(µ) manifestly represents the summation of the series∑
[αs log(MW/µ)]n. It is gratifying to check that for αs � 1 we recover (22):

[
1 + b0

αs(µ)

4π
log

M2
W

µ2

]2d±/b0
−→
αs�1

1 + d±

{
αs(µ)

π
log

MW

µ

}
.

The renormalization group analyses replace the c±(µ) in (22) with the new
expressions in (26):

c+ = 1− αs

π
log

(
MW

µ

)
=⇒

[
αs(µ)

αs(MW)

]−2/b0

,

c− = 1 + 2
αs

π
log

(
MW

µ

)
=⇒

[
αs(µ)

αs(MW)

]+4/b0

. (16.27)

Renormalized by QCD according to (19), the original OA in (3) now becomes
the new ONL = c+O+ + c−O− which constitutes the effective Lagrangian for
nonleptonic decays:

OA =⇒ ONL = c+ O+ + c− O− = cAOA + cBOB,

O± = 1
2

{
[cγµ(1− γ5)b] [dγµ(1 − γ5)u]± [cγµ(1− γ5)u] [dγµ(1− γ5)b]

}
,

cA = 1
2
(c+ + c−) , cB = 1

2
(c+ − c−) . (16.28)

We note that (c+)2 = 1 /c−, and c+ < 1 < c− for all scales µ. The operator
O− receives an enhancement by c−, while the O+ is suppressed by c+. From
(3) to (28), the important result

HµH†
µ =⇒

∑

n

cnOn
which illustrates the Wilson operator product expansion (OPE) method, is
the starting point of all phenomenological analyses of inclusive as well as
exclusive hadronic decays, and will be extensively used in the next sections.

16.1.4 The ∆I = 1
2

in Strangeness Hadronic Decays

As the first application, the general result (28) is now used to study nonlep-
tonic decays of strange particles described by s→ u + d + u. Historically, the
works on QCD renormalization2 of weak interaction were motivated by this
∆I = 1

2
empirical rule (Chap. 6). We start from

GF√
2
VusV

∗
ud[dγµ(1− γ5)u] [uγµ(1− γ5)s] ≡

GF√
2
VusV

∗
ud OS=1

A , (16.29)

where OS=1
A is an equal mixture of the I = 1/2, 3/2 isospin components.

2 Gaillard, M. K. and Lee, B. W., Phys. Rev. Lett. 33 (1974) 108;
Altarelli, G. and Maiani, L., Phys. Lett. 52B (1974) 351
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Indeed, the s field is an isoscalar (I = 0) object (as all other flavored
quarks), only the unflavored u, d fields form an isospin doublet. Therefore
the dγµ(1−γ5)u current behaves as an I = 1 operator (since I3 = 1), whereas
the other current uγµ(1 − γ5)s has I = 1/2. The product 1 ⊗ 1/2 of the two
isospin currents is a mixture of isospin 1/2 ⊕ 3/2. A priori, the nonleptonic
operator OS=1

A described by the product of these two currents can have the
component I = 3/2 as important as the I = 1/2 component; they are on the
same footing.

This isospin analysis strongly disagrees with experiments. As explained
in Chap. 6, the isospin I = 1/2 part of all nonleptonic decay amplitudes
largely dominates the I = 3/2 component. Nonleptonic weak decays of strange
particles (the mesons K as well as the hyperons Λ, Σ, Ξ, Ω−) regularly obey
the ∆I = 1/2 rule, the ratio (A1/2)/(A3/2) of the decay amplitudes ranges
between 15–30, i.e. the corresponding ∆I = 1/2 rates are a few hundred times
faster than the rates having only the ∆I = 3/2 like the K+ → π+ +π0 mode.

Let us indicate how QCD partially solves this difficult problem which
has been with us since the 1950s and is still not completely understood at
present. From (28) the ‘tree’ operator OS=1

A in (29) gets renormalized by
QCD and becomes

OS=1
A =⇒ c−O(

1
2
) + c+O(

3
2
) .

We identify OS− with O(
1
2 ) and OS+ with O(

3
2 ). The subscripts 1

2
and 3

2
refer

to the isospin content of these operators. Let us first show that OS− is a pure
I = 1/2 operator. Indeed

OS− = 1
2

{
[dγµ(1− γ5)u] [uγµ(1− γ5)s] − [uγµ(1− γ5)u] [dγµ(1− γ5)s]

}

is antisymmetric under the interchange of u ↔ d. The antisymmetric state
of these u and d fields has total isospin I = 0, so that the whole OS− is purely
an I = 1/2 object. The I = 1/2 structure of OS− can also be recognized by
using the raising I+ and lowering I− isospin operators defined by

I+d = u , I+u = −d , I−u = d , I−d = −u .

When applying I+ on OS−, we find I+OS− = 0. Since OS− has I3 = +1
2
, this

implies that the total isospin I of OS− must be 1/2, otherwise we would not
get a vanishing result with the raising I+ operator. On the other hand, OS+
is a mixture of I = 1/2 and I = 3/2 since by applying the lowering operator
I− on OS+, one gets I−OS+ 6= 0.

QCD renormalization of the weak operator OS=1
A in (29) enhances the

I = 1/2 part and suppresses the I = 3/2 part. At the scale µ = mK of
K decays and using (27), the associated coefficients are c−(mK) = 2.1 and
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c+(mK) = 0.7. The ∆I = 1/2 enhancement (by the coefficient c−) over the
∆I = 3/2 suppression (by the coefficient c+) is about 3. This is encouraging
but not large enough. For instance, in K→ π + π, the ratio (A1/2)/(A3/2) is
found to be ≈ 22 (see Chap. 11).

To obtain the decay amplitude AI , in addition to the coefficients c−
and c+, we also need the matrix elements of the associated operators OS−
and OS+ inserted between the hadronic states K and π + π. This part is
determined by nonperturbative QCD dynamics of the light K and π mesons
which is likely governed by the chiral symmetry. This topic is not covered in
this book. Quantitatively, it is not clear how c− 〈ππ | O− |K〉 could dominate
c+ 〈ππ | O+ |K〉 by a factor of 22.

Finally, we mention that the penguin operator (11.93) arising from QCD
corrections has also the dimension six as OS=1

A and OS=1
B , so it can mix with

them too. The penguin operator is not of a (V −A) × (V − A) type as are
OS=1
A and OS=1

B , rather it has the structure V× (V −A). The mixing is not
as simple as the OS=1

± in (21) since we cannot use the Fierz rearrangement
together with (11.88). The final result3 is that there are four additional
terms related to gluonic penguin and four to electroweak penguin (diagrams
with photon and Z0 replacing the gluon), so in total there are ten operators
instead of two, OS=1

A and OS=1
B . As emphasized in Chap. 11, the gluonic

penguin is also a pure I = 1/2 operator. Due to the Fierz transformation
V × (V − A) ∼ S + P (see the Appendix), its matrix element taken between
the K and 2π states may be arranged into 〈0 |P |K〉, 〈π |P | 0〉, and 〈π |S |K〉.
These quantities are proportional to 1/ms and 1/md so they can be large for
light quark masses ms and md (Problem 16.1). However, the coefficients
associated with these penguin matrix elements are small, and the overall
contributions may not be sufficiently large.

In brief, the ∆I = 1/2 rule is still an open question and only semiquanti-
tatively understood. Presumably because the s quark is not heavy, we are in
the low-energy regime of strangeness decay, for which nonperturbative QCD
effect is important and should be included. On the other hand, for heavy
particles, perturbative QCD is more reliable due to asymptotic freedom.

16.2 Heavy Flavor Symmetry

Mesons as bound states of quarks and antiquarks can be grouped into three
categories q q, QQ and Qq where q stands for light u, d, or s quarks while Q
for heavy c or b (the top is too heavy to form hadronic bound states before
it decays).

These bound states are characterized by a large separation of mass scales:
MQ ≈ few GeV and ΛQCD ≡ ΛMS ≈ 0.2 GeV, or equivalently, of length scales

3 Buras, A. J., Jamin, M., Lautenbacher, M. E. and Weisz, P. H., Nucl.
Phys. B370 (1992) 69; ibid B375 (1992) 501. Adel, K. and Yao, Y. P., Phys.
Rev. D49 (1994) 4945.
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λQ ' 1/MQ and Rhad ' 1/ΛQCD. The sizes of q q or Qq hadrons are more
or less determined by Rhad ≈ 1 fm which sets the nonperturbative confining
regime of quarks and gluons.

On the other hand, the QCD coupling αs(MQ) of heavy quarks is small
due to the asymptotic freedom, implying that on length scales comparable to
λQ � Rhad, the strong interaction is similar to the electromagnetic interac-
tions. Presumably, for this reason the quarkonium system QQ, whose size is
of the order of λQ/αs(MQ)� Rhad, behaves like the positronium (Chap. 7).

16.2.1 Basic Physical Pictures

At first sight a heavy hadron, say a meson Qq, seems to be more difficult
to treat because its size is still determined by the long-distance confining
regime ∼ Rhad on the one hand, while the Compton wavelength λQ of the
heavy quark is much smaller on the other hand.

However, the crucial point is that the typical momenta exchanged be-
tween the light constituents (q, gluons) and the heavy quark Q are only of
the order ΛQCD in the confining state Qq. An energetic hard probe would
be required to resolve the properties of the heavy quark Q (for instance its
flavors and its spin orientations). The soft momenta exchanged between the
light constituents and the heavy Q can only probe distances much larger than
λQ. Therefore, to the extent that charm and bottom are considered heavy,
the light constituents of the mesons Qq are insensitive to the flavor (charm
or bottom), mass (Mc or Mb), and spin orientations of the heavy quark Q.

The heavy Q acts as a static source of color electric field localized at
the origin, relativistic effects such as color magnetism vanish as MQ → ∞.
Therefore, the spin of Q decouples, and the light quark and gluon cannot
recognize the spin orientations of Q. This is completely different from the
situation found in qq and QQ systems. The irrelevant effect of MQ on the
properties of Qq can be seen as follows. In the rest frame of the heavy hadron,
the heavy quark Q is at rest too, and it is almost on its mass-shell. The wave
function of the light constituents follows from a solution of the field equations
of QCD subject to the boundary condition of the static color source Q. This
boundary condition is independent of MQ, and so is the solution of the light
constituents. This is the physical picture of the heavy flavor symmetry (HFS)
concerning both flavors and spins of the heavy quarks.

The situation bears some similarity with atoms where the nucleus plays
the role of Q and the surrounding electrons that of q. Various isotopes of
a given atomic element have, to a good approximation, the same chemical
properties. Since the electron is governed only by the total electric charge
of the nucleus, adding some neutrons to or removing some from the nucleus
may not change its chemistry. The equivalent of the isotopes are the mesons
B, D, B∗, D∗, and the baryons Λb, Λc. Their light constituents cannot
distinguish their heavy partners Q in the limitMQ →∞. The spin symmetry
is analogous to the degenerate hyperfine levels in atoms.
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Although, for the moment, this observation still does not allow any con-
crete calculation, and since MQ is not infinite, corrections to large but finite
MQ must be somehow treated, the idea nevertheless provides some interesting
relations between the properties of such particles and can be experimentally
checked. This is illustrated by the following examples.

Spectroscopic Consequences of HFS. In the limit MQ → ∞, the spin
of the heavy quark and the total angular momentum j of the light degrees
of freedom inside a hadron are decoupled. The mass MQ is irrelevant, the
dynamics is independent of the spin and mass of the heavy quark. Heavy
flavored hadronic states can thus be characterized by the light flavor, spin,
parity of the light constituents. The heavy flavor symmetry relates the prop-
erties of different bottom and charm particles, while the spin symmetry pre-
dicts that, for a fixed j 6= 0, there is a doublet of degenerate states with total
spin J = j ± 1

2 .
In general, the mass of a hadron HQ containing a heavy quark Q can be

written in the form

MH = MQ + Λq +
∆m2

2MQ
+O(1/M2

Q) , (16.30)

where the parameter Λq represents contributions arising from all terms in
the effective Lagrangian that are independent of MQ, while ∆m2 originates
from all terms of order 1/MQ. For the moment, the details of these terms are
not important, they will be determined later by the Heavy Quark Effective
Theory (HQET). For the ground states JP = 0− and JP = 1−, one can
parameterize the ∆m2 in terms of the two quantities λ1 and λ2,

∆m2 = λ1 + 2[J(J + 1) − 3
2 ]λ2 , (16.31)

where J is the total spin of the meson HQ. All parameters Λq, λ1, λ2 are
independent of MQ, they are functions of the light constituents. So

MBs
−MBd

= Λs − Λd +O(1/Mb) , MDs
−MDd

= Λs − Λd +O(1/Mc) ,

where the value of Λq depends on the light constituents collectively denoted
by q in (30). Since both charm and bottom are considered as heavy, the mass
splitting should be equal. It is confirmed by experiments:

MBs
−MBd

= 90± 3 MeV and MDs
−MDd

= 99± 1 MeV.

For the pseudoscalar and vector meson mass splitting, from (31), we get

M2
B∗ −M2

B = 4λ2 +O(1/Mb) and M2
D∗ −M2

D = 4λ2 +O(1/Mc) .(16.32)

Again this prediction is compatible with data, which give

M2
B∗ −M2

B ' 0.49 GeV2 and M2
D∗ −M2

D ' 0.55 GeV2 . (16.33)
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16.2.2 Elements of Heavy Quark Effective Theory (HQET)

The Fermi theory of weak interactions represented by the right-hand side
of (3) is a typical example of an effective Lagrangian. The W weak boson
effect is ‘integrated out’ and replaced by the dimensional coupling GF and
calculations can be done at low energies far below the W mass. In this effec-
tive Fermi theory, we only use GF. Neither the fundamental weak coupling
g nor the W mass are considered in the computation. Physical quantities
computed from the effective theory are the same as if they are calculated
with the fundamental Lagrangian in a certain kinematic region. It is only at
much higher energies that the W± and Z0 effects can be felt, and the differ-
ence appears. We have met one example: the neutrino cross-section (12.43)
approximates at low energies the exact results (12.42) and (12.44) derived
from the fundamental Lagrangian with the full weak boson effects.

A similar calculational method may be formulated within HQET as a
systematic expansion in terms of local operators with powers of ΛQCD/M .
The long-distance physics of several observables is described by a few param-
eters which can be defined and calculable in terms of the matrix elements of
these operators.

The starting point is the velocity vµ of the heavy hadron H defined by
MHv

µ = P µ, where MH and P µ are the mass and four-momentum of H
containing the heavy quark Q. We note that v2 = vµvµ = 1.

To construct an effective theory in which the heavy quark mass M (we
drop the index Q) becomes irrelevant, we let M tend to infinity while keeping
fixed the four-velocity as in classical mechanics. The momentum P µQ of the
heavy quark may be written as

P µQ = Mvµ + kµ , (16.34)

where kµ is much smaller than Mvµ. The heavy quark is almost on-mass-
shell, i.e. P 2

Q ≈M2. Consider the transition of the hadron H into a new state
of the same heavy quark (with velocity v′) and kµ is the momentum transfer.
The transition changes the residual momentum δk ∼ ΛQCD, but the changes
in the heavy quark velocity δv = v − v′ vanish as ΛQCD/M → 0, i.e. the
velocity vµ is a conserved quantity.

The next step is to introduce the large component Hv(x) and small
component hv(x) of the quark field Q(x) by

Q(x) = e−iMv·x [Hv(x) + hv(x)] , (16.35)

Hv(x) = eiMv·xP+Q(x) , hv(x) = eiMv·xP−Q(x) , (16.36)

where P± are the projection operators defined as

P± =
1± 6v

2
with 6v = γµv

µ . (16.37)
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The main dependence on M has been factored out and contained in the
exponential. These new fields satisfy 6vHv = Hv and 6vhv = −hv.

The heavy quark moving with a fixed velocity has its wave function es-
sentially contained in Hv. Compared to Hv, the component hv is suppressed
by ΛQCD/M and is absent for an on-shell heavy quark Q. Recall that in the
Dirac equation (Chap. 3), there are the two-component upper and lower parts
of the full four-component spinor [see (3.45)]. The large and small compo-
nents are respectively the upper and lower parts of the full four-component
spinor of Q in the rest frame vµ = (1, 0, 0, 0). The field Hv destroys a heavy
quark, while hv creates a heavy antiquark with the same velocity v.

The QCD Lagrangian quark–gluon interaction LQ = Q (i 6D −M)Q is
now rewritten in terms of the new large and small components Hv and hv:

LQ = Hv( iv ·D) Hv − hv (iv ·D + 2M)hv

+
[
Hv (i 6D⊥) hv + hv (i 6D⊥) Hv

]
, (16.38)

where Dµ is the QCD covariant derivative, and Dµ
⊥ = Dµ − (v · D)vµ is

orthogonal to the velocity, i.e. v ·D⊥ = 0.
Clearly, Hv describes massless degrees of freedom, while hv corresponds

to fluctuations with mass twice the mass M . The hv, representing the heavy
degrees of freedom, will be eliminated in the construction of HQET. Using
the equation of motion (i 6D −M)Q = 0, we can re-express hv in terms of
Hv. Indeed,

hv =

[
i 6D⊥

2M + i v ·D

]
Hv ,

which shows that the small component hv is of order 1/M . The above equa-
tion is now put back into (38), and we get a nonlocal effective Lagrangian

Leff = Hv( iv ·D) Hv +Hv( i 6D⊥)
1

2M + i v ·D ( i 6D⊥)Hv .

Because of the phase factor in (36), the x dependence of the effective field
Hv is weak. In momentum space, derivatives acting on Hv represent powers
of the residual momentum kµ which are smaller than M . Therefore, the
nonlocal Lagrangian can be expanded in powers of 6D/M :

Leff = Hv( iv ·D) Hv +
1

2M

∞∑

n=0

Hv( i 6D⊥)

[
− i v ·D

2M

]n
( i 6D⊥)Hv .

Since P+(i 6D⊥)(i 6D⊥)P+ = P+

{
(i 6D⊥)2 +

gs
2
σµνG

µν
}
P+ ,

with [iDµ, iDν] = igsG
µν is the gluon field-strength tensor, one finds

Leff = Hv( iv·D) Hv+
1

2M
Hv( i 6D⊥)2 Hv+

gs
4M

Hv (σµνG
µν) Hv+· · · , (16.39)
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where the dots represents O( 1
M2 ). The first term

Hv( iv ·D) Hv (16.40)

clearly indicates that the strong interaction of a heavy quark is independent
of its mass and spin. Since the Dirac matrices are absent, interactions of the
heavy quark with gluons leave its spin unchanged. If there are NH heavy
quarks moving with the same velocity v, then (40) is generalized to

NH∑

j=1

H
j
v(iv ·D)Hj

v .

Its invariance under the rotation in flavor space is manifest. When combined
with the spin symmetry, we get the SU(2NH) group which represents the spin
and heavy flavor symmetries. Coming from the 1/M expansion, corrections
to the spectator model are provided by the two other terms in (39).

The second operator

Okin =
1

2M
Hv( i 6D⊥)2 Hv −→ −

1

2M
Hv(iD)2Hv

is the gauge-covariant generalization of the kinetic energy arising from the
residual motion of the nearly on-mass-shell heavy quark Q. In the rest frame
of the heavy particle H, (iD)2 = (ivµD

µ)2 − (iDµ)(iD
µ) is the square of the

operator representing the spatial momentum of the heavy quark.
Analogous to the Pauli magnetic interaction, the third operator describes

the chromomagnetic coupling of the heavy quark spin to the gluon field

Omag =
gs

4M
Hv(σµνG

µν)Hv −→ −
gs
M

Hv (S ·Bgl)Hv ,

where S = 1
2
σ is the spin operator (σi are the three Pauli matrices), and

the space components of the chromomagnetic field Bgl are Bigl = −1
2
εijkGjk.

The three terms in (39) constitute the basis for the computation of decay
rates, in particular of the inclusive widths of heavy flavored hadrons. In the
limit M →∞, only (40) remains and represents HQET.

16.3 Inclusive Decays

As the first application of HQET, let us calculate the two typical inclusive
decays of a heavy particle, say of the B meson taken as an example: the
semileptonic ΓSL and the nonleptonic ΓNL widths

ΓSL ≡ Γ(B→ `− + ν` + hadrons) and ΓNL ≡ Γ(B→ hadrons) .

By definition, hadrons are not identified in these inclusive modes. Neglecting
some rare decay modes like B → γ + K

∗
(issued from higher-order penguin
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loop diagram b→ s + γ), the sum of these inclusive decays saturates the total
width or the inverse of the B meson lifetime. The latter by definition describes
the most inclusive decay one can imagine, since none of the particles in the
final state is observed. Inclusive semileptonic decays are relatively easy to
measure, only the charged lepton `− is identified in the decay product. The
inclusive nonleptonic rate may be obtained by subtraction from the total
width the sum over `− = e−, µ−, and τ− of the inclusive ΓSL.

From the theoretical viewpoint, inclusive decays of heavy hadrons have
two unique features. First, bound-state effects related to the decaying B such
as the motion of the heavy b quark inside the initial state can be systemati-
cally accounted for by using the 1/M expansion. The leading term describes
the free b quark decay, i.e. the spectator parton model. Secondly, since the
final states contain so many hadrons in all possible channels, the bound-state
effects of individual decay products may be eliminated (more exactly aver-
aged out). This situation of course does not hold for light hadrons which
have a very limited number of decay products. The second property is based
on a concept called quark–hadron duality, a typical example of which is the
inclusive semileptonic decays of the heavy lepton τ discussed in Chap. 13.

According to the quark–hadron duality, the inclusive decay rate is cal-
culable by QCD, i.e. at the quark and gluon level, after a smearing (or aver-
aging) procedure has been applied. In semileptonic decays B→ `− +ν`+X,
the integration over the lepton pair phase space provides a smearing over the
invariant mass squared (PB − q)2 of the hadrons X, where q = p` + pν . In
τ → ντ +X, the integration over the ντ momentum provides the smearing.

16.3.1 General Formalism

From the optical theorem, the inclusive decay rate of the meson B may be
obtained from the imaginary part of the forward transition amplitude B →
B to second-order G2

F as shown by Fig. 16.6. The inclusive width can be
written as

Γ(B→ X) =
1

2MB

{
2 Im

〈
B |T |B

〉}
. (16.41)

The operator T is given by

T = i

∫
d4x T {LW(x),LW(0)} . (16.42)

Inserting a complete set of states X in the time-ordered T product, we recover
the standard formula for the decay rate:

Γ(B→ X) =
1

2MB

∑

X

(2π)4δ4(PB − PX)|
〈
X | LW |B

〉
|2 . (16.43)
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Fig. 16.6. Imaginary part of the forward scattering amplitude B → B ⇐⇒ Decay
rate of b → X → b, to order G2

F. Dashed line cut gives the imaginary part

In (42), LW(x) is the effective weak Lagrangian built up from the quark fields
and corrected by QCD as outlined in Sect. 16.1. Most importantly, the b(x)
quark field in LW(x) is governed by the HQET Lagrangian.

Because of the large b quark mass, the momenta flowing through the
internal lines in the diagram of Fig. 16.6 are large, thus, following the Wilson
operator product expansion method, the nonlocal operator T may be repre-
sented as a sum of local operators

∑
nOn(b) containing the b(x). The decay

rate may therefore be written as

Γ(B→ X) =
G2

FM
5

192π3

∑

n

an(b→ X)
1

2MB

〈
B | On(b) |B

〉
. (16.44)

On the right-hand side of the above equation, the first common factor Γ0 =
G2

FM
5/192π3 represents the free heavy quark b decay width as given by the

spectator model symbolically depicted in Fig. 16.1. The coefficient an(b →
X) appropriately specifies the mode in which the b quark decays into a
definite final state X, e.g. the semileptonic or the nonleptonic mode. The last
factor 1

2MB

〈
B | On(b) |B

〉
parameterizes the long-distance bound-state effect

of the b quark inside the B meson. The 1/2MB coefficient is conveniently
introduced for dimensional reason, as can be seen later in (53). HQET allows
us to determine the last factor by an expansion in powers of 1/M , the leading
term is model independent and represented by (53).

By a simple dimensional argument, operators On(b) with higher dimen-
sion are suppressed by higher powers of 1/M . Constructed from the b quark
and gluon fields, and since On(b) is a scalar object by definition, the operator
having the lowest dimension is b b with dimension 3. The next operators of
dimension 4 are absent. The reason is simple, since the only gauge-invariant
operator of dimension d = 4 is b(i 6D) b. However, when inserted between
physical quark states, this operator can be reduced to M b b using the equa-
tion of motion of the b field. The next-to-leading operator of dimension d = 5
is the one with the gluon field gsb(σµνG

µν) b. So we have

∑

n

On(b) = b b+
1

M2
gsb(σµνG

µν) b+O
(

1

M3

)
. (16.45)

We proceed in two steps to calculate the inclusive rate Γ(B→ X) from (44).
The first step concerns the coefficients an(b→ X); they are considered at the
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quark level. For instance, the inclusive semileptonic decays are described by
b→ q1+`−+ν`, where q1 stands for the charm and the up quarks. As for the
inclusive nonleptonic decays, we compute b→ q1 + q2 + q3, where the q2–q3

pair stands for d–u and s–c (Cabibbo-favored modes due to |Vud| ≈ |Vcs| ≈ 1)
or s–u and d–c (Cabibbo-suppressed reactions, |Vus| ≈ |Vcd| ≈ 0.22).

The second step concerns the matrix elements of the two operators b b
and bσµνG

µν b in (45) inserted between the B states. The operator bb domi-
nates over the second bσµνG

µν b by 1/M2, so let us first concentrate on the
former. Using (39), we develop the b 6v b as another series in inverse powers
of M :

b 6v b = b b+
1

2M2
b
[
(iv ·D)2 − (iD)2

]
b− 1

2M2
b
[

1
2
gsσµνG

µν
]
b+· · · , (16.46)

where the dots represent the O(1/M3) terms. The important thing is that
the matrix element of the left-hand side of (46) inserted between the physical
B meson states is definitely known. Actually, the bγµ b is the Noether
current for the global bottom quantum number, its expectation value is thus
determined by the bottom flavor content of the B meson and must be 1. This
can be seen as follows.

The starting point is the elastic transition of a B meson of velocity v
into another B meson of velocity v′ induced by the vector current bγµb of the
HQET b(x) field. The most general form of this transition is

1

MB

〈
B(v′)

∣∣ bγµb
∣∣B(v)

〉
= ξ(v · v′) (v + v′)µ , (16.47)

where the dimensionless quantity ξ(v · v′) is called the Isgur–Wise function.
The factor 1/MB on the left-hand side compensates for the dimensional de-

pendence on (mass)
−1

of the state
∣∣B
〉

in the conventional one-particle state
normalization

〈
B(p′)

∣∣B(p)
〉

= 2MB v0 (2π)3 δ3(p − p′) . (16.48)

There is no term proportional to (v − v′)µ on the right-hand side of (47), as
can be seen by contracting its left-hand side with (v − v′)µ and noting that
6vbv = bv and bv′ 6v′ = bv′ .

The form (47) is familiar, we have met it in (10.11) with the electro-
magnetic form factor Fπ(q2) of the π meson which has an identical Lorentz
structure. Like (10.11), the matrix element of the vector current bγµb – in-
serted between the B meson states – defines the B meson electromagnetic
form factor FB(q2):

〈
B(v′)

∣∣ bγµb
∣∣B(v)

〉
= FB(q2)(p + p′)µ , (16.49)

where pµ = MBv
µ, p′µ = MBv

′µ. Comparing (49) with (47), one gets

FB(q2) = ξ(v · v′) , where q2 = (p − p′)2 = 2m2
B(1− v · v′) . (16.50)
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As emphasized in (10.11), the form factor is normalized to unity at q2 = 0
since the current is conserved. This normalization at, and only at q2 = 0,
is not modified by strong or electroweak interaction. This is the physical
reason for the charge of the electron to be the same as that of the charged
B meson (or the antiproton) for instance. Although they are governed by
completely different interactions, their electric charges are identical, i.e. their
electromagnetic form factors at q2 = 0 are all equal to unity:

FB(0) = FD(0) = FK(0) = Fπ(0) = F p
1 (0) = 1 . (16.51)

From (50) and (51), we get

ξ(ω = 1) = 1 , where ω ≡ v · v′ . (16.52)

The model-independent normalization ξ(1) = 1 turns out to be very useful for
the determination of many weak-interaction form factors involved in heavy
flavor physics, as we will see in the next section.

Going back to (46), we multiply (47) by vµ, then using (52), we get for
the last factor of (44),

1

2MB

〈
B
∣∣ b b

∣∣B
〉

= 1− 1

2M2
(λ1 − 3λ2) +O(

1

M3
) , (16.53)

where

λ1 =
1

2MB

〈
B
∣∣ b (iD)2 b

∣∣B
〉
, (iD)2 = (iv ·D)2 − (iD)2 ,

3λ2 =
1

2MB

〈
B
∣∣∣ b gs

2
σµνG

µν b
∣∣∣B
〉
. (16.54)

Equation (53) is remarkable in that the normalization (the term 1 on the
right-hand side) is not only model-independent and unambiguously deter-
mined, but the 1/M correction is also absent because there is no dimensional
d = 4 operators in (45).

Due to HQET, the spectator model receives a solid justification4. Ac-
cording to (44), (45), and (53), the decay width Γ(B→ X) is given by that of
the free b quark decay Γ(b→ X). Nonperturbative corrections due to bound-
state effects start only at the 1/M2 order associated with the parameters λ1

and λ2. Their physical meaning may be seen as follows. In the rest frame,
the expectation value of the operator (iD)2 is < k

2 >, i.e. λ1 represents the
spatial momentum of the b quark inside the B . Its contribution is the field
theory analog of the Lorentz contraction factor

√
1− v2

b ≈ 1 − (k2/2M2)
in accordance with the increase of the lifetime of a moving particle due to
time dilatation. It cannot be computed by first principle, but only by some
phenomenological analyses. We may estimate λ1 to be ' 0.3 GeV2 using the
mass formulas (30) and (31). As for λ2, from (32) we may take

λ2 =
1

4
(M2

B∗ −M2
B) ≈ 0.12 GeV2 .

4 Bigi, I., Blok, B., Shifman, M., Uraltsev, N. and Vainshtein, A., in B
Decays (ed. Stone, S.). World Scientific, Singapore 1994
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16.3.2 Inclusive Semileptonic Decay: B→ e− + νe +Xc

Experiments indicate that the process B→ charmed hadrons dominates B→
unflavored hadrons, in particular the inclusive semileptonic decay B→ charm
+ e− + νe largely exceeds B→ charmless + e− + νe. This implies Vcb � Vub

for the CKM matrix.
As the first application of the general formalism just studied, we consider

the dominant mode B → e− + νe + Xc, where Xc represents the sum over
all charmed hadrons. According to (44) and (53), the process is reliably
described by b → c + e− + νe, and improved by corrections starting at
1/M2. This decay is important, it enables an accurate determination of Vcb

and probes the dynamics of heavy flavors in the cleanest possible conditions,
providing a testing ground for QCD to interplay quantitatively with weak
interaction.

First, at the electroweak level uncorrected by QCD, Γ(b→ c + `− + ν`)
can be directly obtained from Chap. 13 where the rate of a fermion decaying
into three fermions is given by (13.21), (13.62), or (13.63) accordingly. Thus,

Γ(b→ c+e−+νe) =
G2

FM
5

192π3
|Vcb|2 f

(
m2

c

M2

)
≡ Γ0 |Vcb|2 f

(
m2

c

M2

)
, (16.55)

with f(x) = 1 − 8 x + 8 x3 − x4 − 12 x2 log x taken from (13.22). We have
neglected the electron and the neutrino masses. For the decay b→ c+τ−+ντ
representing B→ τ− + ντ +Xc, the τ lepton mass cannot be neglected, the
function f(x) is replaced with the function G(x, y) given by (13.62) where
x = m2

c/M
2, y = m2

τ/M
2.

Next we include QCD corrections to b→ c + e− + νe through the left
vertex [bc] as shown in Fig. 16.3 and (5), so that (55) can be improved:

Γ(b→ c + e− + νe) = Γ0|Vcb|2
[
f

(
m2

c

M2

)
− αs

π
g

(
m2

c

M2

)]
, (16.56)

where g(0) = 2
3

[
π2 − 25

4

]
≈ 2.41 is taken from (5).

The analytic expression of the function g(x) is also known5, it decreases
with increasing x, i.e. g(x) < g(0). Nonperturbative bound-state effects
(parameterized by λ1 and λ2) add new contributions to (56) and yield the
rate Γ(B→ e− + νe +Xc) following (44) and (53). Thus

Γ(B→ e− + νe +Xc) = Γ0

{(
1− λ1 − 3λ2

2M2

)[
f

(
m2

c

M2

)
− αs

π
g

(
m2

c

M2

)]

−6λ2

M2

(
1− m2

c

M2

)4
}
|Vcb|2 . (16.57)

5 Nir, Y., Phys. Lett. 221B (1989) 184; g(x) is obtained by integrating
over ξ the functions Rv

u(ξ) + Rb
u(ξ) with (ρ2 = ρ3 = 0) of Ho-Kim, Q. and

Pham, Xuan-Yem, Phys. Lett. 122B (1983) 297
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The first nonperturbative term in (57) is the matrix element of the operator
bb as given by (53), while the last term in (57) comes from the matrix element
of the nonleading 1/M2 operator gsbσµνG

µν b in (45). It is proportional
to λ2 defined in (54), accompanied by the phase space factor (1 − x)4 =

f(x) − 1
2 x

df(x)
dx due to the nonzero c quark mass.

Equation (57) is important, since the width can be directly obtained
using the semileptonic branching ratio B(B→ e−+νe+Xc) ≈ (10.9±0.46)%
together with the lifetime τB = (1.549 ± 0.02) × 10−12 s of the B meson:
Γ(B→ e− + νe +Xc) = B(B→ e− + νe +Xc)/τB. From these experimental
data, the numerical value of the left-hand side of (57) is known. As for the
right-hand side, using

M = (4.8± 0.2) GeV , M −mc = (3.4± 0.06) GeV , (16.58)

one can extract the CKM matrix element |Vcb| and find

|Vcb| = 0.04± 0.004 . (16.59)

The main uncertainty in (59) comes from the b quark mass M .
The magnitude of Vub involving in b→ u transition may be estimated

by the electron energy spectrum in the decay b→ q1 +e− + νe (q1 = c or u).
Since the electron is emitted with either c or u quark, the electron spectrum
is sensitive to the relative contributions of b→ u +e−+νe and b→ c +e−+νe

and hence to the ratio Vub/Vcb. Because the c is much heavier than the u
quark, at high momentum transfer q2 > (M −mc)

2, or equivalently at high
electron energy, only the b→ u +e− + νe contributes. Hence Vub can be
extracted at the so-called endpoint electron energy spectrum Ee > M/2 =
2.4 GeV, this region is populated only by the leptons in b→ u +`− + ν`.
One gets |Vub/Vcb| ≈ 0.08± 0.02. In the Wolfenstein version (11.79) of the

CKM matrix, the value |Vub/Vcb| = λ
√
ρ2 + η2 ≈ 0.08± 0.02 in turn implies√

ρ2 + η2 = 0.363 ± 0.073, using λ = 0.2205 ± 0.0018. Also from (11.79),
|Vcb| = Aλ2 and using (59), the parameter A can also be extracted. So,

A = 0.794± 0.054 ,
√
ρ2 + η2 = 0.363± 0.073 . (16.60)

16.3.3 Inclusive Nonleptonic Decay: B→ Hadrons

This dominant mode (about 75% for the branching ratio) can be described
by b→ q1 + q2 + q3 following the discussion after (45). There are eight
combinations for the three quarks q1, q2, and q3 in the final state. They all
contribute to the nonleptonic width and must be added up.

The decays b→ c + d + u and b→ c + s + c are dominant since favored
by the CKM matrix elements VcbV

∗
ud and VcbV

∗
cs respectively, while the two

others b→ u + s +u and b→ u + d +c are doubly suppressed by VubV
∗
us and
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VubV
∗
cd. The remaining modes b→ c + s + u, b→ c + d + c, b→ u + d +u

and b→ u + s +c are moderately suppressed at the CKM level.
For definiteness, we consider the b→ c+d+u decay. The corresponding

nonleptonic effective Lagrangian renormalized by QCD is given by (28):

Leff =
GF√

2
VcbV

∗
ud [cAOA + cBOB] , (16.61)

where OA is given by (3) and OB by (13) respectively, while

cA = 1
2
[c+(M) + c−(M)] , cB = 1

2
[c+(M) − c−(M)] . (16.62)

The coefficients c±(µ) are given by (26). At the scale µ = M , numerically
we have cA ≈ 1.12 and cB ≈ −0.28.

The width Γ(b→ c + d + u) ∼ | 〈c, d, u | cAOA + cBOB |b〉 |2 computed
from the first term cAOA is familiar. We have met many times in OA the
(V −A) × (V −A) currents involved in the decay of a fermion into three
other fermions. The same remark applies to the second term cBOB. The
width obtained from these currents is given by Γ0 I(x, y, z) where I(x, y, z)
is taken6 from (13.63) or (13.66):

I(x, y, z) = 12

∫ (1−z)2

(x+y)2

ds

s
(s− x2 − y2)(1 + z2 − s)

[
λ(s, x2, y2)λ(1, z2, s)

]1/2
,

So the width – denoted by ΓA2⊕B2 – coming from the direct contributions of
OA and OB before their interference in | 〈c, d, u | cAOA + cBOB |b〉 |2 is

ΓA2⊕B2 =
G2

FM
5

192π3
|VcbV

∗
ud|2 I

(mc

M
,
md

M
,
mu

M

) [
c2A + c2B

]
, (16.63)

It remains to calculate the contribution to the width coming from the inter-
ference between the two operators OA andOB. Since the currents involved in
these operators are different, it may be convenient to recast them in a form
involving the same currents so that the interference can take place. For this
purpose, let us rewrite OB as OB ≡ (debe) (cfuf ) where for simplification the
γµ(1− γ5) is omitted in these two color-singlet currents (db) and (cu). The
color indices e, f = 1, 2, 3 are on the other hand explicitly written out, thus
by Fierz rearrangement

OB = (debe) (cfuf ) = (deuf) (cf be) .

The last term on the right-hand side of the above equation can be cast into
a form close to OA in order to interfere with it. With (11.88) or (11) we get

(deuf ) (cfbe) =
1

3
(deue) (cf bf) + 2

∑

j

[de (T j)ef uf ] [cg (T j)gh bh]

6 Cortes, J. L., Pham, X. Y. and Tounsi, A. Phys. Rev. D25 (1982) 188
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which immediately gives

OB =
1

3
OA + 2

8∑

j=1

[dT j u] [cT j b] . (16.64)

Similarly, we also have

OA =
1

3
OB + 2

8∑

j=1

[dT j b] [cT j u] . (16.65)

From (64), we see that in OB only the operator 1
3OA can be used to interfere

with OA. The color-octet currents dT j u and c T j b cannot interfere with
the color-singlet currents in OA. The contribution to the b → c + d + u
rate due to the interference between the two operators cAOA and cBOB in
|cAOA + cBOB|2 must come only from OA or OB. Thus,

|(cA + 1
3
cB)OA|2, or |(1

3
cA + cB)OB|2 =⇒

interference

2
3
cA cB|OA|2, or 2

3
cA cB|OB|2

which gives

ΓA⊗B =
G2

F M
5

192π3
|VcbV

∗
ud|2I

(mc

M
,
md

M
,
mu

M

) [2

3
cA cB

]
. (16.66)

Adding (63) to (66), with c2A + c2B + 2
3
cacB = 1

3
(2c2+ + c2−), the b→ c + d + u

rate derived from the effective Lagrangian (61) is

Γ(b→ c + d + u) =
G2

FM
5

192π3
|VcbV

∗
ud|2 I

(mc

M
,
md

M
,
mu

M

) [2 c2+ + c2−
3

]
.(16.67)

A direct calculation of the width from (61) without passing by (64) is tedious,
and of course one should recover (67). This general formula can be used
for all Γ(b → q1 + q2 + q3) with the appropriate changes in Γ0|Vbq1

V ∗
q2q3
|2

I (mq1
/M,mq2

/M,mq3
/M) symbolically denoted by Γ̃0.

The factor (2c2+ + c2−), which is the leading logarithmic correction to the
decay rate, represents the summation |∑n(αs logM/µ)n|2 by the renormal-
ization group equation. The nonleading αs QCD corrections to the rate as
given by (6) could also be added for completeness. For the decay b→ c+d+u,

this nonleading correction to be added to (67) is [ −1.41αs/π]× Γ̃0 if we ne-
glect the three final quark masses. As discussed after (6), for mc = 0.3M

and mu = md = 0, the correction is in fact [ −0.35αs/π]× Γ̃0 which is small.
However, for the decay b→ c +s +c, this αs correction is especially important
because of the massive s+c quarks at the right vertex as discussed previ-
ously (Fig. 16.4). Instead of [−0.35αs/π] × Γ̃0, one has [+3.02αs/π] × Γ̃0

which enhances the b→ c + s + c rate.
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To get the inclusive nonleptonic decay rate of B into charmed hadrons, de-
noted by Γ(B→ Xc), from Γ(b→ c +d +u) as given by (67), the color factor
Nc = 3 must be included by summing over the colors of the pair d+u. This
is to be compared with the inclusive semileptonic rate Γ(b→ c + `− +ν`) in
(55) where the quark pair d+u replaces the lepton pair `− + ν`. Neglecting
the u and d massses and the nonleading αs corrections, we have from (67)
and f(x) = I(x, 0, 0)

Γ(B→ Xc) =
[
2 c2+ + c2−

]
|VcbV

∗
ud|2 f

(
m2

c

M2

)
Γ0 . (16.68)

Since 2c2++c2− > 3, the leading logarithm QCD renormalization effect always

enhances the hadronic rate. It is gratifying to recover the old formula when
the pure electroweak Lagrangian is not renormalized by QCD, i.e. with αs =
0, cA = 1, and cB = 0 (c+ = c− = 1), thus

[
2 c2+ + c2−

]
−→ 3 , and Γ(B→ Xc) −→ 3 |VcbV

∗
ud|2 f

(
m2

c

M2

)
Γ0 , (16.69)

which is three times the inclusive semileptonic rate Γ(B → Xc + e− + νe)
naively expected from counting the color number Nc = 3.

Finally, the nonperturbative b quark effect inside the B meson can be
appropriately improved by the factor

[
1− (λ1 − 3λ2)/(2M

2)
]

corresponding

to the leading term of the bb operator, as in (57). We have

Γ(B→ Xc) =
[
2 c2+ + c2−

]
|VcbV

∗
ud|2 f

(
m2

c

M2

) [
1− λ1 − 3λ2

2M2

]
Γ0 . (16.70)

The inclusive nonleptonic rate is an important quantity contributing to the
total lifetime, from which various branching ratios (in particular the semilep-
tonic branching ratio) can be derived.

16.4 Exclusive Decays

Being complementary to the inclusive decays, the exclusive modes are ex-
tensively investigated on both experimental and theoretical sides. Exclusive
decays are particularly important for testing the dynamics of heavy flavors.
The form factors involved in the bottom decaying into charm can be deter-
mined within the framework of HFS, since both b and c are heavy. Actually
the most precise determination of the CKM matrix element Vcb comes from
the exclusive mode B→ D∗+e−+νe. We first study the semileptonic decays,
then discuss the two-body hadronic modes using the factorization method,
which turns out to be a good approximation, as we will see.
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16.4.1 Form Factors in B`3 Decays

There are several reasons for the semileptonic decays to play a prominent role
in heavy flavor B physics. These decays are the simplest to understand the-
oretically through the spectator diagram shown in Fig. 16.7. Only the form
factors are unknown, but they can be reliably determined from HFS. Sec-
ondly, the charge of the detected lepton identifies the flavor of the B hadron
according to the ∆B = ∆Q rule similar to the ∆S = ∆Q, i.e. an emitted
negative lepton charge shows that a B meson is involved, and conversely a
positive lepton charge represents a B meson. Thirdly, semileptonic branching
ratios are large in B decays, allowing for extensive experimental investiga-
tions. These modes are used to measure the CKM matrix elements Vcb and

Vub, and the size of the B0–B
0

mixing.
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Fig. 16.7. B → D (D∗) + `− + ν`

Like the K`3, the simplest B`3 decay is B (p)→ D(p′) + `−(k1) + ν`(k2).
Its amplitude can be written as a product of the B → D transition induced
by the hadronic vector current V µ = cγµ b times the leptonic current

A =
GFVcb√

2

〈
D(p′) |V µ |B(p)

〉
u(k1)γµ(1− γ5) v(k2) . (16.71)

As explained in Sect. 10.1, the matrix element of any axial current (in par-
ticular Aµ = cγµ γ5 b) between the two pseudoscalar mesons must vanish,
hence only V µ contributes. As discussed in (10.15), on general grounds,
the

〈
D(p′) |V µ |B(p)

〉
matrix element is expressed in terms of the two form

factors f±(q2), with qµ = (p− p′)µ :

〈
D(p′) |V µ |B(p)

〉
= f+(q2) (p + p′)µ + f−(q2) (p− p′)µ . (16.72)

The heavy flavor symmetry (between the b and c quarks) enables us to deter-
mine the normalizations of the form factors at q2max = (MB−MD)2. Starting
from (47) we make use of the flavor symmetry to replace the b quark in the
final state meson by the c quark, thereby turning B meson into D meson.
Then (47) becomes

1√
MB MD

〈
D(v′) | cγµ b |B(v)

〉
= ξ(v · v′) (v + v′)µ (16.73)
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where the same Isgur–Wise function ξ(ω) is involved. Comparing (72) with
(73), we obtain

f±(q2) =
MD ±MB

2
√
MBMD

ξ(v · v′) . (16.74)

Thus HFS relates two independent form factors f±(q2) to the same function
ξ(v · v′). Most importantly, with (52), the normalization ξ(v · v′ = 1) = 1
implies a nontrivial normalization of the form factors f±(q2) at the maximum
momentum transfer q2max. Since q2 = M2

B +M2
D − 2MB MD v · v′, the zero-

recoil limit ω = 1 is equivalent to q2max = (MB −MD)2, thus

f±(q2max) =
MD ±MB

2
√
MBMD

(16.75)

as already announced in (10.16). This model-independent result is valid in
the limit of heavy b and c masses much larger than ΛQCD ' 0.2GeV.

The transition between the pseudoscalar B(p) and the vector D∗(p′, ε)
mesons depends on four independent form factors7, one with V µcb = cγµ b and
three with Aµcb = cγµγ5 b. They are

〈
D∗(p′, ε) | cγµ b |B(p)

〉
= 2 i εµναβ

εν p
′
α pβ

MB +MD∗

V (q2) ,

〈
D∗(p′, ε) | cγµ γ5 b |B(p)

〉
=(MB +MD∗)

[
εµ − ε · q qµ

q2

]
A1(q

2)

− ε · q
[

(p+ p′)µ

MB +MD∗

− (MB −MD∗) qµ

q2

]
A2(q

2)

+ 2MD∗

ε · q qµ
q2

A0(q
2) . (16.76)

In the above equations, the three tensors associated with V (q2), A1(q
2), and

A2(q
2) are constructed to be orthogonal to qµ = (p − p′)µ such that they

vanish when multiplied by qµ = (p− p′)µ. The linear combination

A3(q
2) ≡ MB +MD∗

2MD∗

A1(q
2) − MB −MD∗

2MD∗

A2(q
2) (16.77)

is subject to the constraint A3(0) = A0(0) so that no pole occurs at q2 = 0.
The spin symmetry leads to additional relations among these four form

factors. Using this symmetry, the vector meson D∗ with longitudinal polar-
ization ε3 is related to the D meson by

|D∗(v′, ε3)〉 = 2S3 |D(v′)〉 , (16.78)

7 Wirbel, M., Stech, B. and Bauer, M., Z. Phys. C29 (1985) 637
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where S3 is a Hermitian operator acting on the c quark, its matrix repre-
sentation is denoted by S3. In a general frame, one can define a set of three
orthonormal vectors εi orthogonal to vi from which the generators of the spin
symmetry may be taken as

Si = 1
2
γ5 6v 6εi .

From (78), it follows that

〈
D∗(v′, ε3) | γµ(1− γ5) |B(v)

〉
=
〈
D(v′) | 2 [S3, γ

µ(1 − γ5)] |B(v)
〉
. (16.79)

For the evaluation of the above commutators, it is convenient to use the rest
frame of the final state D∗ meson

v′µ = (1, 0, 0, 0) , εµ3 = (0, 0, 0, 1) , S3 = 1
2γ5γ

0 γ3 ,

and get

2
[
S3, γ

0(1− γ5)
]

=− γ3(1− γ5) , 2
[
S3, γ

3(1− γ5)
]

= −γ0(1− γ5) ,

2
[
S3, γ

1(1− γ5)
]

=− iγ2(1− γ5) , 2
[
S3, γ

2(1− γ5)
]

= +iγ1(1− γ5) .

From (79) and the above equation, one can obtain the matrix element of
the B (v) → D∗(v′) transition from the B (v) → D(v′) transition, both are
related to the universal function ξ(v · v′):

1√
MB MD∗

〈
D∗(v′, ε3) | cγµ γ5 b |B(v)

〉
= [(1 + ω) εµ − (ε · v) v′µ] ξ(v · v′) ,

1√
MB MD∗

〈
D∗(v′, ε3) | cγµ b |B(v)

〉
= i εµναβεν v

′
α vβ ξ(v · v′) . (16.80)

Comparing (80) with (76), the four form factors are now related to ξ(ω) by

MB +MD∗

2
√
MBMD∗

ξ(ω) = V (q2) = A2(q
2) = A0(q

2)

=

[
1− q2

(MB +MD∗)2

]−1

A1(q
2) . (16.81)

At q2max = (MB −MD∗)2 for which ω = 1, their normalizations are

(MB +MD∗)2

4MBMD∗

A1(q
2
max) = V (q2max) = A2(q

2
max) = A0(q

2
max) =

MB +MD∗

2
√
MBMD∗

.

This remarkable relation is a model-independent result, like (75). The six
independent form factors in (72) and (76) are expressed in terms of the uni-
versal ξ(ω) function, normalized by ξ(1) = 1. On the other hand, the q2

behavior of the form factors as well as the ω dependence of ξ(ω) are not
determined by the heavy flavor symmetry.
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16.4.2 Semileptonic Decay Rates

Equipped with these form factors we are now ready to compute the B`3 decay
rates. From the amplitude of B (p) → D(p′) + `−(k1) + ν`(k2) in (71), the
rate is given according to the general formulas (4.55) and (4.70) by

dΓ =
1

2MB (2π)5
d3p′

2E′

d3k1

2E1

d3k2

2E2

∑

spins

|A|2 δ4(q − k1 − k2) , (16.82)

where q = p− p′. Using (74), we have

A =
GF Vcb√

2

MB +MD√
MBMD

ξ(ω)

{
u(k1) 6p (1− γ5)v(k2)

− m`MB

MB +MD
u(k1)(1− γ5)v(k2)

}
; (16.83)

the last term proportional to the lepton mass m` may be neglected for elec-
tron or muon, in which case

∑

spins

|A|2 =

{
16G2

F|Vcb|2|f+(q2)|2
}[

2(p · k1) (p · k2)−M2
B(k1 · k2)

]
.

In the rest frame of the decaying B , q2 = M2
B +M2

D − 2MBE
′, we have

d3p′

2E′
= 2π|p′|dE′ , |p′| =

√
λ(M2

B,M
2
D, q

2)

2MB
= MD

√
ω2 − 1 , E′ = ωMD .

Thus

dΓ =
2π|p′|dE′

2MB (2π)5

{
16G2

F|Vcb|2|f+(q2)|2
}[

2pµpν − gµνM2
B

]
Iµν , (16.84)

where Iµν is the phase space integration of the lepton pair ∼
∫

d3k1d
3k2

already given by (13.11). Since the neutrino is unobserved, we integrate first
(82) over its momentum

∫
d3k2 to obtain the double distributions of the

charged lepton energy E` and the D meson energy E′, the E′ distribution is
equivalent to the q2 distribution, since dq2 = 2MB dE′:

dΓ

dq2 dE`
=
G2

F|Vcb|2
16 π3

|f+(q2)|2
{

2(M2
B −M2

D + q2)
E`
MB
− 4E2

` − q2
}
.

To obtain the q2 distribution, instead of integrating the above equation over
E`, we take directly (84) and use

[
2pµpν − gµνM2

B

]
Iµν =

π

24
λ(M2

B,M
2
D, q

2) ≡ π

6
M2

B |p′|2 . (16.85)
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Putting (85) into (84), the result is

dΓ(B→ D + e− + νe)

dq2
=
G2

F|Vcb|2
24 π3

|p′|3 |f+(q2)|2 ,

or
dΓ

dω
=
G2

F|Vcb|2
48 π3

(MB +MD)2 M3
D

(√
ω2 − 1

)3

ξ2(ω) ,

m2
` ≤ q2 ≤ (MB −MD)2 , 1 ≤ ω ≤ M2

B +M2
D −m2

l

2MBMD
. (16.86)

For B→ +D +τ− + ντ , the tau lepton mass m` cannot be neglected, then

dΓ

dq2
=
G2

F|Vcb|2
24 π3

|p′|3 (1− 2ρ)2
{

(1 + ρ)|f+(q2)|2 + 3 ρ |f0(q2)|2
}
, (16.87)

where

ρ =
m2
`

2 q2
and f0(q

2) =
(M2

B −M2
D)f+(q2) + q2f−(q2)

2MB |p′| . (16.88)

The distribution (86) determines the q2 dependence of the form factor f+(q2),
specially the ω dependence of the universal function ξ(ω). Furthermore,
taking advantage of the normalization ξ(1) = 1, the only unknown in (86)

is Vcb, therefore once the kinematic term
(√
ω2 − 1

)3
is subtracted from the

differential rate dΓ/dω , its value at ω → 1 determines |Vcb|.
In fact, this method is used to study the process B → D∗ + e− + νe

which has the largest branching ratio. Furthermore, with the vector meson
D∗, measurements of its helicity amplitudes by the angular distributions pro-
vide a detailed study of the form factors V (q2), A1(q

2), and A2(q
2), and the

relation (81) can be checked. The longitudinalH0 and transverse H± helicity
amplitudes of the D∗ are related to the form factors by

H0(q
2) =

MB +MD∗

2M∗
D

√
q2

[
(M2

B −M2
D∗ − q2)A1(q

2) − 4M2
B|p′|2

(MB +MD∗)2
A2(q

2)

]
,

H±(q2) =(MB +MD∗)

[
A1(q

2)∓ 2MB|p′|
(MB +MD∗)2

V (q2)

]
. (16.89)

There are three angular distributions that could be used to separate the helic-
ity amplitudes: the angle of the π+ in the rest frame of the D∗ which decays
into D + π, the e− angle in the lepton pair rest frame and the correlation
between these two decay planes. The q2 distribution is found to be

dΓ(B→ D∗ + e− + νe)

dq2
=
G2

F|Vcb|2
96 π3

q2 |p′|
M2

B

∑

i=0,±

|Hi(q
2)|2 . (16.90)
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Using (81), (89), and (90), one gets

dΓ(B→ D∗ + e− + νe)

dω
=
G2

F|Vcb|2
48 π3

(MB −MD∗)2M3
D∗

√
ω2 − 1 (ω + 1)2

×
[
1 +

4ω

ω + 1

q2(ω)

(MB −MD∗)2

]
ξ2(ω) , (16.91)

where q2(ω) = M2
B +M2

D∗ − 2ωMD∗ MB .
In principle (91) should be corrected for the fact that the heavy quarks

are not infinitely large. Fortunately, there exists a theorem8 which states that
at ω = 1, the leading 1/M correction vanishes, such that only corrections of
order 1/M2 are needed for the modes with a vector meson in the final state,
e.g. the D∗ considered here.

Once the kinematic terms in (91) are subtracted from the dΓ/dω distri-
bution, the value of the latter at ω = 1 allows the determination of Vcb by
taking advantage of ξ(1) = 1 +O(1/M2). One gets9

|Vcb| = 0.039± 0.003 , (16.92)

which is in remarkable agreement with the inclusive semileptonic decay (59).

16.4.3 Two-Body Hadronic Decays

Nonleptonic decays of B mesons have been extensively observed and hundreds
of channels have been identified, most of them being the two-body modes like
B → D +π, or quasi-two-body like B → K

∗
+ ψ. Above all, the studies of

nonleptonic decays must deal with the matrix element of the operator product
HµH†

µ inserted between the decaying parent hadron P and the hadrons in the
final state collectively denoted by F . This is in contrast to the semileptonic
decay modes P → F + ` + ν` for which only the single operator Hµ enters
and the decay amplitude is a product of the well-determined matrix element
of the leptonic current

〈
` + ν`

∣∣L†
µ

∣∣ 0
〉

= uνγµ(1 − γ5)v` times the matrix
element 〈F |Hµ | P〉. The latter is expressed in terms of form factors which
are theoretically more or less tractable, and experimentally measurable. This
property for an amplitude to be equal to the product of the matrix elements
of separate currents is called the factorization property.

Factorization. The factorization ansatz for nonleptonic decays is inspired
by the semileptonic decay amplitudes which are always factorized into a prod-
uct of two matrix elements, that of the quark current Hµ and the lepton
current Lµ. Quarks and leptons are separated by the W boson propagator,
and gluons cannot connect them; a typical example is (71).

8 Luke, M. E., Phys. Lett. 252B (1990) 447; analog of the Ademollo–
Gatto theorem in Phys. Rev. Lett. 13 (1964) 264

9 Stone, S., in B Decays, World Scientific, Singapore 1994; Neubert, M.,
Int. J. Mod. Phys. A11 (1996) 4173
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This is not the case of nonleptonic decays, generically described by Q→
q1 + q2 + q3, where soft gluons exchanged among quarks of the two currents
Hµ

Qq1
= q1γ

µ(1 − γ5)Q and Hµ
q2q3

= q2γ
µ(1 − γ5)q3 make factorization à

priori inapplicable. For the hadronic decays P → F , the matrix element〈
F
∣∣HµH†

µ

∣∣P
〉

is involved; if we insert hadronic intermediate states between

the product HµH†
µ, we would not know how many states to include.

However, for the two-body decays of a heavy particle, there is a physical
reason supporting factorization; it may be undestood through the intuitive10

‘color transparency argument’. Because of the large mass of the decaying
particle in energetic two-body transitions, hadronization by soft gluons ex-
changed among the decay products does not occur until they have traveled
some distance away from each other. The reason is that once the two color-
singlet quarks are formed in Hµ and H†

µ separately, soft gluons are ineffec-
tive in rearranging them. Created in a pointlike interaction b→ c + d +
u, a fast-moving colorless ud quark pair leaves the interaction region in the
same direction with a velocity close to the speed of light and will hadronize
only after a time given by its γ = [

√
1− (v2/c2)]−1 factor multiplied by a

typical hadronization time τhad ∼ 1 fm/c. In this example, this means that
hadronization occurs about 20 fm away from the remaining c +q quarks (q
being the spectator light constituent of the B meson). Inside the weak in-
teraction region, the ud colorless pair behaves like a hadron and does not
interact with the remaining colorless cq pair which forms the second hadron.

The factorization is a working hypothesis which turns out to be a good
approximation and can be tested, at least for a class of two-body reactions.
Using factorization, nonleptonic two-body decays are not only the cleanest
channels to study but also provide an instrument for exploring the most in-
teresting aspect of nonperturbative QCD. Indeed, since the decaying heavy
particle can be isolated and the weak transition has a well-determined struc-
ture, a detailed analysis of the decay products with different spin and flavor
provides precious information about the long-range forces that govern the
internal structure of hadrons. Especially interesting are the form factors and
the decay constants, which describe the quark–antiquark attraction inside a
hadron. As many of them are not experimentally accessible in leptonic or
electromagnetic processes, nonleptonic decays provide a way to extract them.

To illustrate the factorization method, we consider the two-body modes
B→D +π, B→D∗+π, and B→D +ρ for both charged and neutral decaying
B meson. The corresponding Lagrangian which governs these decays are
given by (61) and (62). The mesons in the final state can be directly generated
by the quark current carrying the appropriate flavor quantum numbers. The
three quarks c, d, and u in the final state then combine with the light q
constituent of the B meson to form the charmed and unflavored hadrons in
the decay products, for instance B → D +π. There are essentially two ways
for the spectator q to combine with the other three quarks c, d, and u to

10 Bjorken, J. D., Nucl. Phys. (Proc. Suppl.) B11 (1989) 325
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generate D and π. Either D comes from the combination c+q and π from
d+u (Fig. 16.8a), or D comes from c+u, and π from the other combination
d+q (Fig. 16.8b). The latter is sometimes called the color-suppressed mode,
for a reason that will be clear soon.
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Fig. 16.8. Spectator picture for (a) B
0
→ D+ + π−, and (b) B

0
→ D0 + π0, the

light constituent q = d of B
0

is spectator

Thus, like the semileptonic formula (71) and Fig. 16.7, the amplitude
factorizes into the product of the matrix elements of two color-singlet quark

currents. For instance, the amplitude of B
0
(p)→ D+(p′)+π−(q) in Fig. 16.8a

may be written as

Mπ−D+ = a1
GF√

2
VcbV

∗
ud

〈
π−(q)

∣∣ dγµ γ5 u
∣∣0
〉〈

D+(p′) | cγµ b |B0
(p)
〉
, (16.93)

where the coefficient a1 is defined as follows: we go back to (61), (62), and
especially using (64), to write the nonleptonic effective Lagrangian as

Leff =
GF√

2
VcbV

∗
ud





(
cA +

1

Nc
cB

)
OA + 2cB

∑

j

[dT j u][cT j b]





=
GF√

2
VcbV

∗
ud [a1OA + · · ·] ,where a1 = cA +

1

Nc
cB , (16.94)

the dots represent the second term with color-non-singlets T j currents.
Unlike (93), the matrix element of the second operator vanishes when we

insert colorless hadrons between T j ·T j, e.g. 〈π| dT j u |0〉× 〈D| c T j b |B〉 = 0.
Whereas for OA, which is the product [cγµ(1 − γ5) b] × [dγµ(1 − γ5)u] of
two color-singlet currents, the insertion of hadronic states (or vacuum) be-
tween these currents yields nonzero result as explicitly shown by (93). The
〈Dπ| dT j u c T j b |B〉 term which constitutes the nonfactorizable contribu-
tion is discarded.

Since everything in (93) is known,

〈
π−(q)

∣∣ dγµ γ5 u
∣∣ 0
〉

= ifπqµ = ifπ(p − p′)µ ,〈
D+(p′) | cγµ b |B0

(p)
〉

= (p+ p′)µf+(q2) + qµf−(q2) ,
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we obtain

Mπ−D+ = i a1
GF√

2
VcbV

∗
ud fπ

[
(M2

B −M2
D)f+(m2

π) +m2
πf−(m2

π)
]
, (16.95)

where f±(q2) are given in (74); the last term ∼ m2
π may be neglected.

The process B
0 → D+ + π− associated with a1OA of (94) is shown in

Fig. 16.8a. This B
0 → D+ + π− decay is similar to the semileptonic mode

B
0 → D+ + `− + ν` shown in Fig. 16.7 with the π− replacing the `− + ν`

pair. Let us call class I the modes governed by the a1OA operator. All decay

modes B
0 → H+

c + h− where H+
c are charmed mesons (D+ , D∗+ etc. ) and

h− unflavored mesons (π−, ρ−, a−1 (1260), etc. ) belong to class I.
The case of Fig. 16.8b associated with OB in Leff is new and has no

direct relation with semileptonic decays; it belongs to class II. From (61) and
(65), we have

Leff =
GF√

2
VcbV

∗
ud





(
cB +

1

Nc
cA

)
OB + 2cA

∑

j

[dT j b][cT j u]





=
GF√

2
VcbV

∗
ud [a2OB + · · ·] ,where a2 = cB +

1

Nc
cA . (16.96)

The class II is also called color-suppressed decay, since cB < cA and in a2 the
dominant coefficient cA is suppressed by the factor 1/Nc. All decay modes

B
0 → H0

c + h0, where H0
c denotes neutral charmed mesons (D0 , D∗0, etc. )

and h0 neutral unflavored mesons (π0, ρ0, a0
1(1260), etc. ), belong to class II.

Also the mode B→ J/ψ + K is color-suppressed (Fig. 16.9).
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Fig. 16.9. Color-suppressed decay B → J/ψ+ K

Finally, both a1OA and a2OB contribute to the decays B− → H0
c +h− which

belong to classe III and illustrated by Fig. 16.10.
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The decay width Γ(B
0 → D+ + π−) is directly obtained using the two-

body phase space integral given in the Appendix together with (95):

Γ(B
0 → D+ + π−) =

1

2MB

1

(2π)2

∫
d3p′

2E′

d3q

2Eπ
|Mπ−D+ |2δ4(p− p′ − q)

=
a2
1 G

2
F |VcbV

∗
ud|2

32π
M3

Bf
2
π

(
1− M2

D

M2
B

)3

|f+(0)|2. (16.97)

In (97), the pion mass is neglected. As in (93), the amplitude for the decay

B
0
(p)→ D+(p′) + ρ−(q) is obtained straightforwardly. Using (13.45) for the

ρ− decay constant fρ− =
√

2 fρ0 ≈
√

2× 150 MeV, one has

Mρ−D+ = a1
GF√

2
VcbV

∗
ud mρ fρ− [(p + p′) · ερ] f+(m2

ρ) ,

Γ(B
0 → D+ + ρ−) =

a2
1 G

2
F |VcbV

∗
ud|2f2

ρ−

32πM3
B

[
λ(M2

B,M
2
D, m

2
ρ)
] 3

2 |f2
+(m2

ρ)|.(16.98)

For B
0 → D∗++π−, we need the B

0 → D∗+ transition form factors as defined
in (76), and only the A0(q

2) contributes when (76) is multiplied by the pion
four-momentum qµ in 〈π(q)|dγµγ5u|0〉 = i fπqµ:

Mπ−D∗+ = i a1
GF√

2
VcbV

∗
ud fπ [2MD∗ ] [q · εD∗ ]A0(m

2
π) ,

Γ(B
0 → D∗+ + π−) =

a2
1 G

2
F |VcbV

∗
ud|2

32π
M3

Bf
2
π

(
1− M2

D∗

M2
B

)3

|A0(0)|2 , (16.99)

where again the pion mass is neglected. In the class I decays governed by
a1OA, the form factors f+(q2), A0(q

2) correspond to the ‘heavy-to-heavy’
b→ c transitions. With the heavy flavor symmetry (HFS), they are described
by the universal function ξ(ω) and given in (74) and (81).

For the class II decays with a2OB, the involved form factors correspond
to the ‘heavy-to-light’ b → d transitions. For instance, the amplitude of

B
0
(p)→ D0(p′) + π0(q) is

Mπ0D0 = a2
GF√

2
VcbV

∗
ud

〈
D0(p′) | cγµ γ5 u | 0

〉〈
π0(q)

∣∣ dγµ b
∣∣B0

(p)
〉
.(16.100)

The first factor
〈
D0(p′) | cγµ γ5 u | 0

〉
can be related to the decay constant fD

defined by 〈0 | cγµ γ5 d |D+(p′)〉 = ifDp
′
µ, and fD can be extracted in principle

from D+ → µ+ + νµ, just as fπ is obtained from π+ → µ+ + νµ. As for the

second factor, it can also be related to
〈
π+ | uγµ b |B0

〉
by isospin rotation:

〈
π0(q)

∣∣ dγµ b
∣∣B0

(p)
〉

=
1√
2

〈
π+(q) |uγµ b |B0

(p)
〉

=
1√
2

{
(p+ q)µf̃+(p′2) + (p − q)µf̃−(p′2)

}
.
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And so,

Mπ0D0 = i a2
GF

2
VcbV

∗
ud fD

[
(M2

B −m2
π)f̃+(M2

D) +M2
Df̃−(M2

D)
]
,

from which the rate Γ(B
0 → D0 + π0) is easily obtained. The heavy-to-

light form factors f̃± are the same as in the decay B
0 → π+ + e− + νe

represented at the quark level by b→ u +e−+νe which has its rate suppressed
by |Vub|2 � |Vcb|2. Unlike the ‘heavy-to-heavy’ case, these ‘heavy-to-light’
form factors cannot take advantage of HFS, its theoretical determination may
be uncertain and model dependent. Nevertheless, the normalizations f̃±(0)

and the q2 dependences of f̃±(q2) can be determined by B
0 → π+ + `− + ν l

data, although it is a difficult experimental task.

Tests of Factorization. A glance at Fig. 16.7 and Fig. 16.8a together
with the corresponding formulas (86) and (97) or (98) immediately gives us
the following relation which constitutes a test of factorization:

Rh ≡
Γ(B

0 → Hc
+ + h−)

dΓ(B
0 → Hc

+ + e− + νe)/dq2 |q2=m2
h

= 6 π2|a1|2|Vud|2 f2
h Xh, (16.101)

where h− is an unflavored meson like π−, ρ−, a1(1260)− with their respec-
tive decay constants fh and their corresponding phase space ratio Xh =
M6

B / [λ(M2
B,M

2
Hc
, m2

h)]
3/2 ' 1. From the q2 distribution of the semileptonic

decay dΓ(B
0 → Hc

+ + e− + νe)/dq
2 at different values of q2 = m2

h, the rela-
tion (101) can be tested. For many modes, the ratios Rh are found to be in
good agreement with data11, thus supporting the factorization.

The method is easily extended to other class I decays, in particular the

B
0 → D+ + D−

s and B
0 → D+ + D∗−

s modes, which are also favored by the
CKM matrix elements VcbV

∗
cs. Using factorization, one can extract the decay

constants fDs
and fD∗

s
. The fDs

≈ 240MeV obtained from factorization is in
agreement with data coming from D+

s → µ+ + νµ.
The decay constant fD∗

s
(like fK∗), which cannot be determined by the

leptonic mode (since the weak decays D∗+
s → µ+ + νµ, K∗ → µ+ + νµ are

swamped by the strong decays D∗
s → Ds + π, K∗ → K + π), nevertheless can

be extracted from B
0 → D+ +D∗−

s . Also, the decay constant of the a1(1260)
meson defined in (13.56) can be determined using

Γ(B0 → D+ + a1
−)

Γ(B0 → D+ + ρ−)
=

f2
a1

f2
ρ

[
λ(M2

B,M
2
D, m

2
a1

)

λ(M2
B,M

2
D, m

2
ρ)

]3/2 |f+(m2
a1

)|2
|f+(m2

ρ)|2
.

One obtains fa1
≈ 250 MeV in agreement with the value derived in Chap. 13

from τ → ντ + 3π.

11 Browder, T. E. and Honscheid, K., Prog. Nucl. Part. Phys. 35 (1995)
81; Neubert, M. and Stech, B., CERN preprint –TH 97-99 (1997)
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16.5 CP Violation in B Mesons

Since 1964, with the discovery of CP violation in KL → 2π, no new CP-
violating phenomenon has been observed although the standard KM mecha-
nism offers a theoretical framework for this effect and opens to CP violation
prospects outside the K system, in particular in the bottom sector. B meson
decays address three fundamental questions:

(i) Nature and sources of CP violation. Is the KM phase the only
mechanism for CP violation ? Is it true that only charged currents violate
CP whereas neutral currents are CP-conserving as the standard model tells
us? As explained in Chap. 11, while the experimental value of the parameter
ε in the neutral K meson can be accommodated by the standard model, it
does not by itself provide a test for it. On the other hand, the ε′ parameter is
subject to theoretical uncertainties because we are in the low-energy regime
of nonperturbative QCD, and experimental data for ε′ are still inconclusive
as to whether or not there exists a direct CP violation as predicted by KM.

(ii) CP asymmetries in B0 decays provide an alternative method to mea-
sure the CKM parameters. This is important since the traditional semilep-
tonic modes used for the determination of Vub cannot take advantage of HFS
(the u quark is light) and therefore is subject to theoretical uncertainties.
Also, the precise values of the CKM matrix elements, in particular those
related to the top quark Vtd, Vts which cannot be directly measured, can be
determined. The unitarity of the 3×3 CKM matrix can then be tested, so
that the prospect of new fermionic families arises if unitarity does not hold.

(iii) CP asymmetries in the B sector are sensitive to the possible exis-
tence of ‘new physics’ beyond the standard model induced by the quantum
loop effects of virtual new particles.

16.5.1 B0–B
0

Mixing

In Chap. 11, the general formalism for the neutral K mesons mixing has been
outlined and the formulas (11.39)–(11.49) can be directly applied also to the
systems B0

d ≡ bd and B0
s ≡ bs. We discuss the case of B0

d and omit the
subscript d for convenience, so that B0

d = B0.
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Fig. 16.11a,b. B0
d ↔ B

0

d transition through b d → db

Since B0 can mix with B
0

by weak interactions (box diagrams of Fig. 16.11
similar to Fig. 11.1), a neutral B meson weak-interaction eigenstate can be
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written as a superposition of B0 and B
0

using a 2× 2 mixing matrix M̃ij− i
2
Γ̃ij

as in (11.41). The off-diagonal terms are responsible for the B0–B
0

mixing,

M̃12 corresponds to virtual transition between the B0 and B
0
, while Γ̃12

describes real transition due to decay modes which are common to both

B0 and B
0
. Similar to (11.43), we introduce a heavy component Bh and a

‘less heavy’ Bl component. They are mixtures of the CP eigenstates, B1 =
(B0 −B0)/

√
2 and B2 = (B0 + B0)/

√
2 of eigenvalues ±1 respectively:

B1 = p B0 + q B
0

=
1√

1 + |ε̃|2
(B2 + ε̃B1) ,

Bh = p B0 − q B
0

=
1√

1 + |ε̃|2
(B1 + ε̃B2) ,

q

p
=

1− ε̃
1 + ε̃

=

√
M̃∗

12 − i
2 Γ̃∗

12√
M̃12 − i

2 Γ̃12

=
M̃∗

12 − i
2 Γ̃∗

12√[
M̃∗

12 − i
2
Γ̃∗

12

] [
M̃12 − i

2
Γ̃12

] . (16.102)

Indirect CP violation in B0–B
0

mixing arises if

∣∣∣∣
q

p

∣∣∣∣ 6= 1 −→ ε̃ 6= 0 (16.103)

which results from the fact that the physical flavor eigenstates Bh and Bl are
different from the CP eigenstates B1 and B2.
Let us define ∆mB = MBh

−MBl
and ∆ΓB = ΓBh

− ΓBl
. Similar to (11.45)

and (11.46), the diagonalization of the 2× 2 matrix M̃12 − i
2 Γ̃12 gives

MBl
− i

2
ΓBl

= M0 −
i

2
Γ0 +

√[
M̃∗

12 − i
2 Γ̃∗

12

] [
M̃12 − i

2 Γ̃12

]
,

MBh
− i

2
ΓBh

= M0 −
i

2
Γ0 −

√[
M̃∗

12 − i
2
Γ̃∗

12

] [
M̃12 − i

2
Γ̃12

]
,

q

p
=
−2 (M∗

12 − i
2 Γ∗

12)

∆mB − i
2
∆ΓB

=
∆mB − i

2∆ΓB

−2 (M12 − i
2

Γ12)
, (16.104)

so that

(∆mB)2 − 1

4
(∆ΓB)2 = 4 |M̃12|2 − |Γ̃12|2 ,

(∆mB) (∆ΓB) = 4 Re(M̃12Γ̃
∗
12) . (16.105)

The mass difference ∆mB has been measured to be≈ (0.467±0.017) (ps)−1 =

(3.07 ± 0.11) × 10−4 eV by the B0 and B
0

oscillations as well as by the
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observation of the same sign dilepton events (see below). From (105) we

deduce that once ∆mB is known, a tiny Γ̃12 � M̃12 implies |∆ΓB| � ∆mB

and ∆mB ≈ 2 |M̃12|. We first show that Γ̃12 � M̃12.

For the neutral B0 and B
0

system, the off-diagonal term Γ̃12 is extremely

small since the overlap in the decay products of B0 and B
0

is rare. Indeed, the
B0 decays mostly into anticharmed and unflavored particles described by b→
c+d+u, while the B

0
decays into charm from b→ c + d +u. These final decay

products are completely distinct. There exist only a few common channels

into which both B0 and B
0

decay. They are B0 → D++D−( or π++π−)← B
0

coming from b→ c + d +c (or b→ u + d +u). However, their rates are
suppressed by |VcbV

∗
cd|2 (or |VubV

∗
ud|2). Experimentally, only an upper bound

< 10−3 is known for the branching ratio into the common decays B0 → Xcom

and B
0 → Xcom.

Therefore, the lifetime difference ∆ΓB between Bh and Bl is tiny and
almost impossible to measure. Neither the long nor the short neutral B
mesons are experimentally accessible; however, a mass difference ∆mB exists
between the two neutral weak-interaction eigenstates Bh and Bl, which have
almost equal lifetimes τB0 = 1/ΓB ≈ (1.549± 0.020)× 10−12 s.

This is in sharp contrast to the neutral K meson system where the off-

diagonal Γ12 is large since both K0 and K
0

can decay into the common 2π
and 3π channels. With a large Γ12, the KL and KS have a large lifetime
difference, and therefore they are called K-long and K-short. This unique
situation is due to the particular mass scale of the K mesons which have only
two hadronic decay modes into 2π and 3π, as discussed in Chap. 11. Both
∆mK = mL −mS and ∆γ = ΓS − ΓL are comparable, as given in (11.52).

The Ratio (q/p)B in the B System. For the K system, we know that
2 Re (ε) ≈ (3.27± 0.12)× 10−3 as measured by the electron–positron asym-
metry δK(t) in (11.55). Therefore, the ratio (q/p)K defined in (11.44) for the
K system is
∣∣∣∣
q

p

∣∣∣∣
K

≈ 1− 2 Re(ε) ≈ 1−O(10−3) ,

a small deviation from 1 of the ratio |(q/p)K| for the K system is due to CP

violation in the ∆S = 2 transition through the K0–K
0

mixing.
For the B system, on the other hand, independently of the question of

CP violation, we can already anticipate from the fact Γ̃12 � M̃12, i.e. ε̃� 1
that the ratio (q/p)B must be very close to 1. Indeed,

(
q

p

)

B

=

√
M̃∗

12 − i
2 Γ̃∗

12√
M̃12 − i

2 Γ̃12

≈ −M̃
∗
12

|M̃12|

(
1− 1

2Im

[
Γ̃12

M̃12

])
,

∣∣∣∣
q

p

∣∣∣∣
B

≈ 1−O(10−3) . (16.106)
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Therefore, indirect CP violation in the ∆B = 2 transition through B0–B
0

mixing must be a very small effect, as in the K system. The ε̃ of the B
mesons is presumably even smaller than the ε of the K mesons. However, as
we will see, direct CP violation in the ∆B = 1 transitions, i.e. in B decays,
is expected to be large according to the standard model. This is again in
sharp contrast with the K meson in which the ∆S = 1 direct CP violation is
vanishingly small [recall the parameter ε′ � ε (Chap. 11)].

The Mass Difference ∆mB. Once the neutral B mesons are produced in
pairs, their semileptonic decays (inclusive or exclusive) provide an excellent

method to measure the B0–B
0

mixing. From their respective quark contents,

B0 decays into a positive charged lepton `+ while B
0

goes into a negative `−.

If B0 and B
0

do not mix, the produced pair B0+B
0

would have a distinc-
tive signature of a dilepton with opposite signs `+ + `−. Therefore, a fully
reconstructed µ+ + µ+ same-sign event would unambiguously demonstrate

the conversion of a B
0

into a B0, i.e. the pair B0–B
0

becomes two B0 which
subsequently decay into µ+ +µ+. This event indeed was found 12 and shows

that mixing must exist. Since then, the B0–B
0

mixing has a much better
statistics 13

The mass difference ∆mB is a measure of the frequency of the change

from a B0 into a B
0

or vice versa. This change is reflected in either the
time-dependent oscillations (similar to Fig. 11.2 for the K mesons) or in the
time-integrated rates corresponding to the dilepton events having the same
sign (see (112) below). Similar to the KL and KS system in (11.8), let us
write

|Bh(t)〉 =
[
e−t ΓB/2

] (
e−i tMB

)
e−i t∆mB/2 |Bh(0)〉 ,

|Bl(t)〉 =
[
e−tΓB/2

] (
e−i tMB

)
e+i t∆mB/2 |Bl(0)〉 . (16.107)

The evolution (107) of the mass eigenstates Bh(t) and Bl(t) when combined

with (102) gives the time evolution of B0(t) and B
0
(t):

∣∣B0(t)
〉

= h+(t)
∣∣B0(0)

〉
+
q

p
h−(t)

∣∣∣B0
(0)
〉
,

∣∣∣B0
(t)
〉

=
p

q
h−(t)

∣∣B0(0)
〉

+ h+(t)
∣∣∣B0

(0)
〉
, (16.108)

h+(t) = e−tΓB/2 e−i tMB cos(t∆mB/2) ,

h−(t) = i
[
e−tΓB/2 e−i tMB sin(t∆mB/2)

]
. (16.109)

12 Albrecht, H. et al., Phys. Lett. 192B (1987) 245
13 Wu Sau Lan, in Proc. 17th Int. Symp. on Lepton– Photon Interactions,

(1995) Beijing (ed. Zheng Zhi-Peng and Chen He-Sheng). World Scientific,
Singapore 1996
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As in (11.10) and (11.11), starting at t = 0 with an initially pure B0, the

probability for finding a B0 (B
0
) at time t 6= 0 is given by |h+(t)|2 (|h−(t)|2).

Taking |q/p| = 1, one gets

|h±(t)|2 =
1

2
e−tΓB [1± cos(t∆mB)] . (16.110)

Conversely, from an initially pure B
0

at t = 0, the probability for finding a

B
0

(B0) at time t 6= 0 is also given by |h+(t)|2 (|h−(t)|2). The oscillations

of B0 or B
0

as shown by (110) give ∆mB directly. Integrating |h±(t)|2 from
t = 0 to t =∞, we get

∫ ∞

0

d t|h±(t)|2 =
1

2

[
1

ΓB
± ΓB

Γ2
B + (∆mB)2

]
. (16.111)

The ratio

r =
B0 ↔ B

0

B0 ↔ B0
=

∫∞

0
d t|h−(t)|2∫∞

0
d t|h+(t)|2 =

x2

2 + x2
, where x ≡ ∆mB

ΓB
, (16.112)

reflects the change of a pure B0 into a B
0
, or vice versa. This change is

manifested by the same-sign dilepton events compared to the opposite sign
dilepton and yields

x =
∆mB

ΓB
= 0.71± 0.04 . (16.113)

This result, when combined with the oscillation measurement, gives the av-
erage ∆mB = (3.07± 0.12)× 10−4 eV, which is a hundred times larger than
the corresponding ∆mK of the K meson system.

The CKM Matrix Element Vtd from ∆mB. Similar to the ∆mK in
Chap. 11, the mass difference ∆mB is calculated from the box diagrams of
Fig. 16.11 which give M̃12. Contrary to the K meson case where both the
charm and the top quark contributions are important, we find that when we
apply the formulas (11.36) and (11.37) to the B meson case, the top quark

largely dominates M̃12. Since Γ̃12 � M̃12 from (105), one has ∆mB ≈ 2|M̃12|:

∆mB ≈ 2|M̃12| =
G2

Fm
2
t MB f

2
B

6 π2
g(xt) ηt |V ∗

td Vtb|2 B , (16.114)

where ηt ≈ 0.55 is the gluonic correction14 to the box diagrams, g(xt) is
already given in (11.37), fB is the B meson decay constant involved in B+ →
τ+ + ντ similar to the decay constants fπ, fK, fD. The last factor B, like

14 Buras, A., Jamin, M. and Weizs, P. H., Nucl. Phys. B347 (1990) 491
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the one defined in (11.29), represents the correction to the vacuum insertion
used in the evaluation of ∆mB. The decay constant fB, not yet determined
by experiments, is taken to be 180± 50 MeV and the parameter B is taken
as 1±0.2, both values obtained from lattice calculations 15. Then (114) gives

|Vtd| = (9.2± 3)× 10−3 = Aλ3
√

(1− ρ)2 + η2 (16.115)

which represents one more constraint on the parameters ρ and η of the CKM
matrix, in addition to (60):

|1− ρ− iη| = 1.01± 0.22

From (112) and (114), we realize that the B0 − B
0

mixing can be observed
because of the large ∆mB or, equivalently, because of the large top quark
mass which compensates for the small |V ∗

td|2.
Using (106) and (114), one finds the following expression frequently used:

(
q

p

)

B

=

√
M̃∗

12 − i
2

Γ̃∗
12√

M̃12 − i
2

Γ̃12

≈

√
M̃∗

12√
M̃12

=

√
(VtdV

∗
tb)

2

√
(V ∗

tdVtb)2
=
VtdV

∗
tb

V ∗
tdVtb

≡ e−2 i β, (16.116)

which tells us that to a very good approximation the ratio q/p is a pure phase.
The angle β which characterizes the standard CP violating mechanism is an
important quantity in the unitarity triangle we are considering now.

Unitarity Triangles. As discussed in (11.85), the unitarity of the CKM
matrix is visualized by six triangles, all of which have the same area 1

2J ,
and the standard CP violating mechanism is reflected by J 6= 0. In a phase
reparameterization of the quark fields that build the CKM matrix, the tri-
angles change their orientation in the plane, but their shape remains unaf-
fected. Among the six triangles, only two have a regular shape due to the
fact that their three sides are not dissimilar and proportional to λ3 where
λ = sin θC ≈ 0.22. The remaining four triangles always have one side much
smaller than the other two sides. These two regular triangles are those which
connect the CKM matrix elements that belong either to the first and the
third columns, or to the first and the third rows. The triangle illustrated in
Fig. 16.12 comes from

Vud V
∗
ub + Vcd V

∗
cb + Vtd V

∗
tb = 0 . (16.117)

Figure 16.12b is taken from Fig. 16.12a by dividing all sides by Vcd V
∗
cb. This

quantity by convention is taken to be real. The rescaled triangle has the
coordinates (0, 0), (1, 0) and (ρ, η) with ρ = ρ (1 − 1

2
λ2), η = η (1 − 1

2
λ2).

Physical quantities measuring CP violation can be expressed in terms of J
or, equivalently, of the angles α, β, γ. Now we show that these angles can be
obtained by measuring the differences between the B and B decay rates into
various channels due to CP violation.

15 Michael, C., in Proc. 17th Int. Symp. on Lepton–Photon Interactions,
(1995) Beijing (ed. Zheng Zhi-Peng and Chen He-Sheng). World Scientific,
Singapore 1996
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Fig. 16.12a,b. The angles α, β, γ of the unitarity triangle

16.5.2 CP Asymmetries in Neutral B Meson Decays

The most promising method of measuring CP violation is to look for an asym-

metry between the Γ(B0 → fcp) and Γ(B
0 → f cp), where fcp is a hadronic

state having a well-defined CP eigenvalue ±1. These states of definite CP
parities are called CP eigenstates. We have f cp = ±fcp depending on the CP
parity of fcp. Some examples of CP eigenstates are the two-particle systems:
ψ+KS (CP parity = –1), π+ +π− (CP parity =+1), and ρ0 +KS (CP parity
= –1). Next, we define the amplitudes A, A and the parameter ξ as

A ≡
〈
fcp |HW |B0

〉
, A ≡

〈
f cp |HW |B

0
〉

, ξ ≡ q

p

A

A
. (16.118)

The time evolution of the decay amplitudes can be written as

〈
fcp |HW |B0(t)

〉
= A [h+(t) + ξ h−(t)] ,

〈
f cp |HW |B

0
(t)
〉

=
p

q
A [h−(t) + ξ h+(t)] . (16.119)

The rates for an initial pure B0 (or B
0
) to decay into a CP eigenstate fcp (or

f cp) at time t are given by

Γ
(
B0(t)→ fcp

)
= C

[
1 + |ξ|2

2
+

1− |ξ|2
2

cos(∆mB t)− Im(ξ) sin(∆mB t)

]
,

Γ(B
0
(t)→ f cp) = C

[
1 + |ξ|2

2
− 1− |ξ|2

2
cos(∆mB t) + Im(ξ) sin(∆mB t)

]

where C = |A|2e−ΓB t. The time-dependent CP asymmetry is defined as

a(t) =
Γ(B0(t)→ fcp) − Γ(B

0
(t)→ f cp)

Γ(B0(t)→ fcp) + Γ(B
0
(t)→ f cp)

=
(1− |ξ|2) cos(∆mB t) − 2 Im(ξ) sin(∆mB t)

1 + |ξ|2 . (16.120)
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We have seen in (116) that |q/p| = 1. Furthermore, if |A/A| = 1 so that
|ξ| = 1, the asymmetry a(t) simplifies considerably:

a(t) = −Im(ξ) sin(∆mB t) . (16.121)

The total rate asymmetry is obtained by integrating the numerator and de-
nominator of (120). For |ξ| = 1, we have

a =

∫∞

0
dt
{
Γ(B0(t)→ fcp)− Γ(B

0
(t)→ fcp)

}

∫∞

0
dt
{
Γ(B0(t)→ fcp) + Γ(B

0
(t)→ fcp)

} =
−x

1 + x2
Im(ξ) , (16.122)

where x is given in (113). We note that the integrated asymmetry a is
suppressed when x � 1 (case of charmed D0 mesons, since ΓD � ∆mD) or
when x� 1 (case of B0

s ≡ bs). In these cases, the time-dependent asymmetry
a(t) is appropriately useful.

When |ξ| = 1, the quantity ξ, which may be written as ξ = ei θ, is
very interesting since its imaginary part, i.e. sin θ, is directly related to the
CKM matrix elements, such that measurements of the asymmetries directly
determine the CKM angles. So our next task is to look for the conditions
that guarantee |A/A| = 1.

As already illustrated by (11.64) and (11.65) for K0 → 2π and K
0 → 2π

processes, in general the amplitudes of B0 and B
0

decaying into an arbitrary
state can be written as the sum of various contributions,

A =
∑

k

Ake
i δk ei φk , A =

∑

k

Ake
i δk e−iφk , (16.123)

where φk is the weak interaction CKM phase that represents CP violation
while δk is the strong-interaction phase-shift due to rescattering effects among
the hadrons in the final state. The δk enters A and A without changing sign
since the strong interactions conserve CP. Thus |A| = |A| if the various
contributions Ak have the same CKM phase, or in particular, if there is only
one dominant contribution. In these special cases, the hadronic uncertainties
essentially due to the unknown δk are eliminated in the ratio |A/A| = 1. But
generally |A/A| 6= 1, since nonleptonic decays in (123) receive contributions
from both the ‘tree’ and ‘penguin’ amplitudes. The former – if favored by the
CKM matrix elements (say VcbV

∗
ud or VcbV

∗
cs) – would dominate the latter

which are suppressed by QCD perturbative higher orders. However, it is
not difficult to find some counterexamples where ‘tree’ amplitudes are either
forbidden or suppressed by VubV

∗
us ∼ 10−3 VcbV

∗
ud. Furthermore, tree and

penguin amplitudes have different CKM phases in general.
Fortunately, there exist a few cases where |A/A| = 1. In particular, we

are interested in b→ s + c +c (responsible for the decay mode B→ J/ψ + K)
which in turn allows the determination of the angle β. This mode receives
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contributions from both tree and penguin diagrams. However, we will see
that |A/A| = 1 still holds.

Generically, the penguin diagram is always of the type b → s (d) + q
+q and shown in Fig. 16.13a. We note that the internal loop is dominated
by the top quark because of its mass and also because Vtb ≈ 1 is largest. The
dominant penguin amplitude corresponds to the process b→ s +q + q (for
instance b→ s +c+ c or b→ s +u +u). The amplitude can be directly taken
from Hglu

pen given in (11.94). Let us write it as

αs

12π
VtbV

∗
ts log

m2
t

m2
b

, (16.124)

where the factor GF/
√

2, the quark fields, and the Dirac matrices explicitly
written in (11.94) are omitted here for simplicity. The nondominant penguin
diagram b→ d +q+q can be taken from (124) by replacing V ∗

ts with V ∗
td < V ∗

ts.
The same b→ s +c + c amplitude due to the tree diagram (Fig. 16.13b)

is proportional to VcbV
∗
cs, which is larger than (124).
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Fig. 16.13. The transition b → s + c + c by (a) penguin (b) tree diagram

Within the standard KM mechanism of CP violation, the decay mode
B→ J/ψ+KS is very interesting since, not only the tree amplitude dominates
the penguin amplitude, but both amplitudes have a common CKM phase
such that independently of their relative magnitude, the condition |A| = |A| is
fulfilled. Adding the penguin part to the tree diagram amplitude in (123) does
not affect |ξ| = 1, so that the asymmetry in (121) or (122) is theoretically very
clean. For this reason, the asymmetry of this ‘gold-plated’ mode would be the
first to be measured in the future B meson factories. This decay has already
been observed with a branching ratio ∼ 10−3. So the next experimental task
is to measure the asymmetry, which needs a much larger statistics.

The decay B → J/ψ + KS issued from B → J/ψ + K is governed at the
quark level by b→ c + s + c for which the amplitude of the tree diagram
is proportional to VcbV

∗
cs as mentioned previously. The other details of the

amplitude are irrelevant. The transition of K into KS will be discussed later.
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The penguin amplitude for the same reaction B → J/ψ + K, as shown by
(124), has the VtbV

∗
ts factor. This factor has the same phase as the tree

amplitude VcbV
∗
cs, so even with the sum of the tree and penguin amplitudes

in (123), we still have |A/A| = 1 since

A

A
=
VcbV

∗
cs

V ∗
cbVcs

. (16.125)

Let us emphasize that, independently of the details of both the tree (Fig. 16.9)
and penguin (Fig. 16.14) decay amplitudes, the ratio A/A is model indepen-
dent and always given by (125). This ratio is sufficient for a prediction of the
asymmetry.

There remains the factor q/p for ξ in (118). In fact, there are two q/p.
One, associated with the B system (q/p)B, is already known in (116) and the
other, (q/p)K, is still to be determined since, with a KS in the final state, one

has to take into account the mixing of K0 and K
0

in the KS too. For this
purpose, we must look for the ratio

(
q

p

)

K

≡
〈
KS

∣∣K
〉

〈KS |K 〉
.

We write KS = pK K0 + qK K
0
, then

〈
KS

∣∣K
〉

= q∗K, 〈KS |K〉 = p∗K, so

(
q

p

)

K

=
q∗K
p∗K

.

The ratio qK/pK comes from M12 in (11.80) of the box diagram in Fig. 11.1.
This ratio qK/pK can be directly taken from qB/pB with the substitution b↔s
and t↔c which is suggested by comparing the box diagrams in Fig. 11.1 and
Fig. 16.11. Thus

(
q

p

)

K

=

(
V ∗

csVcd

VcsV ∗
cd

)∗

=
VcsV

∗
cd

V ∗
csVcd

. (16.126)

Using (116), (125), and (126), the parameter ξ in (118) for B→ J/ψ+ KS is

ξψKS
=

(
q

p

)

B

(
q

p

)

K

VcbV
∗
cs

V ∗
cbVcs

=

(
VtdV

∗
tb

V ∗
tdVtb

) (
VcsV

∗
cd

V ∗
csVcd

) (
VcbV

∗
cs

V ∗
cbVcs

)

=

(
VtdV

∗
tb

V ∗
tdVtb

) (
V ∗

cdVcb

VcdV ∗
cb

)
=

(
VtdV

∗
tb

V ∗
tdVtb

)
= e−2 iβ

since Vcd V
∗
cb is real (see Fig. 16.12). Note that the CP eigenstate J/ψ + KS

has intrinsic CP parity −1; the ratio A/A has an extra minus sign so that
actually ξψKS

= −exp(−2iβ), and consequently the asymmetries a(t) and a
defined in (121) and (122) are proportional to − sin(2β).
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Therefore, a measurement of the asymmetry in B→ J/ψ + KS directly
gives the β angle. From our present knowledge of the values of the CKM
parameters ρ and η as given by (60), (115) and depicted in Fig. 16.12, one
may take 0.3 ≤ sin 2β ≤ 0.8, such that the asymmetry a is expected to be in
the range −0.4 ≤ a ≤ −0.15 with a negative sign.

We finally mention that asymmetries are also expected in many other
modes, such as for instance in charged B± meson decays. The condition
∣∣∣∣
A
A

∣∣∣∣ 6= 1 (16.127)

implies direct CP violation, whereA = 〈F |HW |B+〉 andA =
〈
F |HW |B−

〉
.

Note that contrary to the case where F = fcp which gives |A/A| = 1 in (118),
since the final state F is not a CP eigenstate, the condition (127) requires at
least two partial amplitudes Ak in (123) that differ in both their weak and
strong interaction φk and δk phases.
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Fig. 16.14. B → K + J/ψ by penguin transition

The standard CP-violating KM mechanism is very predictive since all CP
violation phenomena are described by a single parameter which can be taken
as J . The interesting asymmetry in B→ J/ψ + KS, which is free of hadronic
uncertainties in the evaluation of the decay amplitude, is the best example;
it can be used as a consistency check of the KM mechanism. Therefore, once
the various CP asymmetries in B mesons are measured, deviations from these
predictions, if they arise, would provide clues about the new physics beyond
the standard model.

Problems

16.1 The |∆I| = 1
2 rule and the penguin operator. Show that the

matrix element of the penguin operator Open = [d γµ(1 − γ5)λ
b s] [q γµλb q]

in (11.94) inserted between the K and ππ states can be enhanced by terms
proportional to 1/mq where q are light u, d, or s quarks. So they contribute
to the |∆I| = 1

2 rule in the right direction.

16.2 The decay constant fB. To extract the decay constant fB, what
are the relevant decay modes of the B meson to look for? Estimate the
corresponding branching ratios.
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16.3 The rare decay B→ γ+K∗. At the quark level, show that this mode
is governed by b→ γ + s. Draw the corresponding Feynman diagram and
estimate the amplitude using the calculation outlined in Chap. 11 for gluonic
penguin. Explain why the mode B→ γ + K is forbidden (more generally,
any transition of the pseudoscalar mesons 0− → 0− + γ vanishes). The rare
modes are interesting due to possible effects of new particles in the loops.

16.4 Relations among B→ K(K∗) and D→ K(K∗) form factors. These
form factors are of the type ‘heavy-to-light’ transitions, hence heavy flavor
symmetry cannot be applied. However, using HFS, one may derive

〈K(p′) |Vµ |B(v)〉√
MB

=
〈K(p′) | Vµ |D(v)〉√

MD

up to corrections O(1/M). Since the form factors are evaluated with the
velocity transfer (v − v′)2, show that

fB→K
± (tB) =

[
MB +MD

2
√
MBMD

fD→K
± (tD)− MB −MD

2
√
MBMD

fD→K
∓ (tD)

]
, (16.128)

where tB and tD are related by

vB · vK = vD · vK =⇒MDtB −MBtD = [MB −MD][MBMD −M2
K].(16.129)

The interest of these relations lies in the fact that the D→ K (K∗) form
factors can be determined by experiments on semileptonic D decays; whereas
the B→ K (K∗) form factors are not accessible by semileptonic modes. By
factorization, the B→ K (K∗) form facors are involved in nonleptonic color-
suppressed decays. Compute the B→ J/ψ + K rate in terms of the D→ K
form factors.

16.5 Inclusive B meson semileptonic branching ratio. Compute the
branching ratio Bsl, using the formulas (57), (67), and (68)

Bsl ≡
Γ(B→ Xc + e− + νe)

Γtot
.

16.6 The CKM angles α and γ. Show that the CP asymmetry between

B0 → π+ + π− and B
0 → π+ + π− gives the α angle. The angle γ comes

from the asymmetry between the B0
s → ρ0 + KS and B

0

s → ρ0 + KS. Show
that the tree and penguin amplitudes of these modes do not have the same
phase, in contradistinction with the best mode J/ψ + KS.
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