
14 One-Loop QCD Corrections

Until now our calculations have been limited for the most part to the low-
est perturbative order or ‘tree’ graphs. But all processes receive higher-order
contributions – usually called radiative corrections – from diagrams that con-
tain ‘loops’, even those (such as flavor changing neutral reactions) for which
the lowest-order tree amplitudes are absent. Then new effects can only arise

from loops, some typical examples are the K0–K
0

mixing and the effective
∆S = 1 neutral current (penguin) considered in Chap. 11. Weak decays offer
an excellent opportunity for the study of radiative corrections due to either
QCD or electroweak interactions. An n-loop diagram has an implicit factor
(h̄)n; a tree (zero-loop) diagram has (h̄)0. The (h̄)n factor shows that the tree
graphs are equivalent to classical (Born) approximation, whereas loops are
synonymous with quantum effects. This chapter introduces some important
concepts and basic calculational methods of quantum corrections.
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Fig. 14.1. Tree diagram of weak decay τ− → ντ + q2 + q
3

As a first illustration, let us consider the one-loop QCD corrections to
the inclusive semileptonic decay of the lepton τ as described by τ → ντ+
quark pairs. This mode has been studied in Sect. 13.4 at the tree diagram
level (Fig. 14.1). The QCD corrections to order g2

s = 4παs are represented
by the five diagrams in Fig. 14.2 and Fig. 14.3.

Although the diagrams of Fig. 14.2 are plagued with ultraviolet diver-
gences due to high momenta of virtual particles in the loop integrals, these
divergences will be removed by the renormalization procedure, which ulti-
mately yields a finite (renormalized) amplitude.

To order αs, the radiatively corrected rate of τ → ντ + q2 + q3 has two
parts. One, ΓVi with virtual gluons, comes from the interference between
the tree amplitude (Fig. 14.1) and the renormalized amplitude (Fig. 14.2).
The other, ΓRe with real gluons, comes from the square of the bremsstrahlung
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amplitude (Fig. 14.3). Both ΓVi and ΓRe are still ill defined because of another
kind of divergence, viz. the infrared divergence, which originates from low
momenta of virtual or real massless gluons. What is well defined is the sum
ΓVi + ΓRe, in which the infrared divergences cancel each other. This chapter
shows how to deal with both ultraviolet (UV) and infrared (IR) divergences
encountered in quantum corrections and how to calculate the finite parts. We
remark that five diagrams similar to those considered here also represent the
αs-order QCD corrections to the e+ + e− → hadrons cross-section, discussed
in (13.5) and (13.65). The only difference is that a photon (connecting the
e+e− with the quark pair) replaces the W boson.
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Fig. 14.2a–c. Virtual gluon corrections to weak decay τ− → ντ + q2 + q
3
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Fig. 14.3a, b. Real gluon emission in weak decay τ− → ντ + q2 + q
3

+ g

Before computing these QCD radiative corrections, we first evaluate the
vertex function Γµ(p2, p3) and the quark self-energy Σ(p) which represent the
essential parts of the diagrams in Fig. 14.2.
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14.1 Vertex Function

To zero order of the QCD coupling constant gs (Fig. 14.4a), the weak inter-
action vertex W(q) → q2(p2) + q3(p3) can be written as γµ(1 − γ5) to be
inserted between the spinors u(p2) and v(p3). The weak coupling constant
gW = −i g Vq2q3

/2
√

2 is implicit. When effects of virtual gluons to order g2
s

(Fig. 14.4b) are considered, the tree-level weak vertex γµ(1 − γ5) becomes
the QCD-corrected weak vertex function Γµ(p2, p3). Thus

u(p2) γ
µ(1 − γ5)v(p3) −→ u(p2) [γµ(1 − γ5) + Γµ(p2, p3)] v(p3) , (14.1)

where Γµ(p2, p3) has the following expression from Feynman rules:

Γµ(p2, p3) =

∫
d4k

(2π)4
(−i gsγ

ρ λj

2
)

i

6k+ 6p2 −m+ iη
γµ(1 − γ5)

i

6k− 6p3 −m+ iη

× (−i gsγ
σ λj

2 )
i [−gρσ + (1 − ξ)kρkσ/k

2]

k2 + iη
. (14.2)

For simplicity, the quark masses are taken to be equal (m2 = m3 = m).
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Fig. 14.4. (a) Bare vertex γµ(1 − γ5); (b) dressed vertex function Γµ(p2, p3)

The dependence of Γµ(p2, p3) on the gauge-fixing term ξ of the gluon
propagator in fact will be canceled by the dependence of δq on ξ [this quan-
tity δq which comes from the self-energy term Σ(p) of Fig. 14.2b, c, will be
introduced later in (40)]. Therefore, when we sum over the three diagrams
of Fig. 14.2 to obtain the ultraviolet-convergent renormalized vertex function,
the ξ-dependent contributions are canceled so that we can use the Feynman–
’t Hooft gauge (ξ = 1) from the outset. For SU(Nc) color group, using (7.45)

and (7.46), the sum over j of (
λj

2 )(
λj

2 ) in (2) yields

∑

j

λj

2

λj

2
= C2(Nc) =

N2
c − 1

2Nc
, (14.3)

which is equal to 4
3

for Nc = 3. All of these operations lead to

Γµ(p2, p3) =
−4ig2

s

3

∫
d4k

(2π)4
γρ(6k+ 6p2 +m)γµ(1 − γ5)(6k− 6p3 +m)γρ

(k2 + 2k · p2 + iη)(k2 − 2k · p3 + iη)(k2 + iη)
.(14.4)
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When Γµ(p2, p3) is inserted between u(p2) and v(p3) and the Dirac equation
u(p2)(6 p2 −m) = 0 = (6 p3 + m)v(p3) together with 6 a 6 b+ 6 b 6a = 2a · b are
used, the numerator γρ(6k+ 6p2 +m)γµ(1 − γ5)(6k− 6p3 +m)γρ of (4) can be
rewritten as Nµ(k, p2, p3) defined by

Nµ(k, p2, p3) ≡
{
[−4p2 · p3 + 4k · (p2 − p3)]γ

µ + 4mkµ − 4 6k (p2 − p3)
µ

+ γρ 6kγµ 6kγρ

}
(1 − γ5) + 4m 6kγµγ5 . (14.5)

As we will see, most of the integrals in loop diagrams diverge, we must cut off
or regularize the momentum variable to handle the infinities encountered in
the integrations. There are at least two methods: the Pauli–Villars covariant
momentum cutoff (Problem 14.5), and the dimensional regularization. The
latter, invented by ’t Hooft and Veltman, also independently by Bollini and
Giambiagi and by Ashmore, is used here. No matter which regularization
method is adopted, any choice is as good as any other, provided that the
symmetries of the theory (e.g. Lorentz and gauge invariances) are preserved
throughout the calculations.

The idea of dimensional regularization is simple, and is based on the
observation that the degree of divergences of loop integrals may be decreased
by lowering the space-time dimension. Dimensional regularization amounts
to computing divergent integrals in an arbitrary space-time dimension n
smaller than 4, resulting in a finite result, as long as the parameter ε ≡ 4−n
is nonvanishing. Then the result is analytically continued to n ≥ 4. The
original infinities in the physical n = 4 world then arise as poles at ε, in
the form of Γ(2 − n

2 ) ∼ 2/ε, where Γ(x) is the Euler function. Appropriate
formulas are given in the Appendix. The advantage of this scheme is that
Feynman rules and the gauge symmetry of the theory do not depend on n.

Remark. While there is no problem with the extension of γµ = gµνγν to
arbitrary n dimensions (the metric tensor gµν associated with {γµ, γν} can
be defined for µ, ν = 0, · · ·n− 1), the generalization of γ5 = γ5 to n 6= 4

γ5 = iγ0 γ1 γ2 γ3 = −iγ0 γ1 γ2 γ3 =
i

4!
εµνρσγ

µ γν γρ γσ =
i

4!
εµνρσγµ γν γρ γσ ,

does present a problem, since the antisymmetric tensor εµνρσ is only defined
in 4 dimensions. One may still define the equivalent of γ5 in n dimensions as

γ̃ =
i

4!
εµ1···µn

γµ1 · · ·γµn . (14.6)

However, when taking the trace of products of γµ matrices and γ̃, one will get
into trouble. For instance, the trace Tr[γµ γν γρ γσγ̃] which gives 4i εµνρσ 6= 0
for n = 4, would vanish if we use (6) for n 6= 4. One might worry about
the presence of γ5 in our calculation. For the problem considered here, γ5
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is innocuous. The trace of γµγν · · ·γ5 never occurs in our integral loops, it
arises only in the computation of the rate. However, for the latter, it is even
unnecessary to perform the trace with γ5 because we first integrate over the
symmetric phase space

∫
dp2 dp3, such that the contributions of γ5 vanish

(they are antisymmetric in p2 ↔ p3). We will explicitly show that γ5 is
harmless in the course of the calculation.

Furthermore, the n-dimensional Dirac matrices obey Tr(γµγν) = 2n/2gµν

(n even) or 2n−2gµν (n odd), however, the n dependence of 2n/2 or 2n−2 does
not affect the momentum integrals, these factors can be safely replaced by 4,
their value at n → 4, when we compute physical quantities. As a result1, the
traces of Dirac matrices without the γ5 depend only on their anticommutation
relations, and can be safely taken from the corresponding four-dimensional
formulas, for instance Tr(6a 6b) = 4 a · b. However, gµνgµν = δµ

µ = n.
With (5), the Γµ(p2, p3) becomes in n space-time dimensions

Γµ(p2, p3) =
−4ig2

s

3

∫
dnk

(2π)n

Nµ(k, p2, p3)

(k2 + 2k · p2)(k2 − 2k · p3)(k2)
. (14.7)

In (7) and what follows, the small +iη in the denominator of (4) is omitted,
although we keep in mind that the Feynman prescription +iη in the propa-
gators is important for the evaluation of the dnk integrals, using the Wick
rotation (Appendix). On the second line of (5), the first term γρ 6kγµ 6kγρ,
which is quadratic in k makes the integral divergent as k → ∞. Therefore,
we keep γρ 6kγµ 6kγρ = (2 − n) 6kγµ 6k in n dimensions (Appendix), instead
of −2 6kγµ 6k, when n = 4. The difference between the (2 − n) and −2 of the
6kγµ 6k term, when multiplied by the pole 1/ε, yields finite terms as ε→ 0.

From now on, we adopt a convenient method due to Feynman which
consists in writing every product in the denominator of a product of prop-
agators as an integral over auxiliary variables (Appendix). Accordingly, the
denominator of (7) can be written as

1

(k2 + 2k · p2)(k2 − 2k · p3) k2
= 2

∫ 1

0

dx

∫ 1−x

0

dy

[k2 + 2k · (−p3x+ p2y)]3
.

Putting it back into (7), we have

Γµ(p2, p3) = −2i

(
4g2

s

3

)∫ 1

0

dx

∫ 1−x

0

dy

∫
dnk

(2π)n

Nµ(k, p2, p3)

[k2 + 2k · (−p3x+ p2y)]3
.

The
∫

dnk of the six terms of Nµ(k, p2, p3)/[k
2 + 2k · (−p3x+ p2y)]

3 – where
Nµ(k, p2, p3) is given in (5) – can be read off directly from the Appendix.
For instance, we get for the first term of Nµ(k, p2, p3)

∫
dnk

−4p2 · p3γ
µ(1 − γ5)

[k2 + 2k · (−p3x+ p2y)]3
= C ×

[
2(2m2 − q2)γµ(1 − γ5)

]
,

1 Marciano, W., Nucl. Phys. B84 (1975) 132
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where C is an overall factor, with q2 = (p2 + p3)
2 ≥ 4m2 :

C ≡ iπ
n
2 Γ(3 − n

2 )

2 [D(x, y)]3−
n
2

, D(x, y) = −m2(x+ y)2 + q2xy.

The result of the integration is now written as follows, with the symbol ⇒

−4p2 · p3γ
µ(1 − γ5) ⇒ C ×

[
2(2m2 − q2)γµ(1 − γ5)

]
.

In this way, the
∫

dnk integration of the six terms in Nµ(k, p2, p3) are

−4p2 · p3γ
µ(1 − γ5) ⇒ C ×

[
2(2m2 − q2)γµ(1 − γ5)

]
,

+4k · (p2 − p3)γ
µ(1 − γ5) ⇒ C ×

[
2(q2 − 4m2)(x+ y)γµ(1 − γ5)

]
,

+4mkµ(1 − γ5) ⇒ C × [−2m(x + y)(p2 − p3)
µ(1 − γ5)] ,

−4 6k(p2 − p3)
µ(1 − γ5) ⇒ C × [+4m(x + y)(p2 − p3)

µ] ,

+4m 6kγµγ5 ⇒ C ×
[
−4m2(x+ y)γµγ5 + 8mxpµ

3γ5

]
,

(2 − n) 6kγµ 6k(1 − γ5) ⇒
{
(2 − n)

[
D(x, y)γµ(1 − γ5) + (x+ y)2m(p2 − p3)

µ
]

+
(2 − n)2

2

Γ(2 − n
2
)

Γ(3 − n
2
)
D(x, y)γµ(1 − γ5)

}
× C. (14.8)

The final result is put into the form

Γµ(p2, p3) =
4
3g

2
s

(4π)
n
2

∫ 1

0

dx

∫ 1−x

0

dy
Γ(3 − n

2 ) Gµ(x, y, p2, p3)

[D(x, y)]3−
n
2

, (14.9)

where Gµ(x, y, p2, p3) is the sum of the six terms on the right-hand side of
(8), without the overall factor C. The x ↔ y symmetry of both the de-
nominator [D(x, y)]3−n/2 and the integration domain in (9) implies that the
antisymmetric (x− y) terms in (8) vanish after the x, y integrations. These
antisymmetric (x − y) terms are therefore not shown in (8). We regroup
Gµ(x, y, p2, p3) into the combination

Gµ(x, y, p2, p3) = aγµ + b
(p2 − p3)

2m

µ

−
[
cγµ + d

(p2 + p3)
µ

2m

]
γ5 , (14.10)

with a = 2(2m2 − q2) + 2(q2 − 4m2)(x+ y) + (2 − n)D(x, y)

+
(2 − n)2

2

Γ(2 − n
2 )

Γ(3 − n
2 )

D(x, y) ,

b = 2m2(x+ y)[2 + (2 − n)(x+ y)] , d = −4m2(x+ y) , c = a − d .

Using the Gordon decomposition, we replace (p2 − p3)
µ with 2mγµ − iσµνqν

and group all terms on the right-hand side of (10) into two bases, the vectorial
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part γµ, iσµνqν and the axial one γµγ5, q
µ γ5 . These sets belong to the first-

class currents with respect to the G-parity classification, like (12.52). Thus

Γµ(p2, p3) = γµF1(q
2)+

iσµνqν

2m
F2(q

2)−
[
γµG1(q

2) +
qµ

2m
G3(q

2)

]
γ5 .(14.11)

At the tree level, the weak vertex is just a constant γµ(1 − γ5). When
dressed by the gluon to order g2

s , the one-loop diagram of Fig. 14.4b gives
rise to the vector form factors F1(q

2) and F2(q
2) as well as to the axial

form factors G1(q
2) and G3(q

2). The emergence of form factors is intuitively
understandable, since surrounded by clouds of gluons and quark pairs, the
pointlike quark continuously emits and absorbs virtual particles. It behaves
physically as a composite system of virtual particles and hence develops a
structure with its own form factors. We have:

F1(q
2) = 4

3

g2
s

(4π)n/2

(n − 2)2

2

∫ 1

0

dx

∫ 1−x

0

dy
Γ(2 − n

2 )

[−m2(x+ y)2 + q2xy]
2−

n
2

+ 4
3

g2
s

8π2

∫ 1

0

dx

∫ 1−x

0

dy
m2[−2 + 2(x+ y) + (x+ y)2 ] + q2(1 − x)(1 − y)

m2(x+ y)2 − q2xy
,

F2(q
2) = 4

3

g2
s

4π2

∫ 1

0

dx

∫ 1−x

0

dy
m2(x+ y)(1 − x− y)

m2(x+ y)2 − q2xy
,

G1(q
2) = F1(q

2) − 2F2(q
2) ; G3(q

2) = 2F2(q
2) . (14.12)

In (10) and (12), ε = 4 − n 6= 0 is kept only for terms coming along with
the singular function Γ(2 − n

2
) = Γ(ε/2). For the regular terms associated

with Γ(3 − n
2
), the limit ε → 0 can be safely taken right away. From (3),

the typical QCD factor 4
3 becomes 1 in QED when the gluon in Fig. 14.4b is

replaced by a photon. Making the change u = x+ y , uv = x− y, we obtain

F1(q
2) = 4

3

g2
s

(4π)n/2

(n− 2)2

2

∫ 1

0

du

u3−n

∫ 1

−1

(
dv

2

)
Γ(2 − n

2 )
[
−m2 + 1

4q
2(1 − v2)

]2−n
2

+ 4
3

g2
s

8π2

∫ 1

0

du

u

∫ 1

−1

(
dv

2

)
m2[−2 + 2u+ u2] + q2[1 − u+ 1

4u
2(1 − v2)]

m2 − 1
4q

2(1 − v2)
,

F2(q
2) = 4

3

g2
s

4π2

∫ 1

0

du

∫ 1

−1

(
dv

2

)
m2(1 − u)

m2 − 1
4
q2(1 − v2)

. (14.13)

For F2(q
2), the u, v integrations are straightforward and give

F2(q
2) = 4

3

g2
s

16π2

1√
η(η − 1)

{
log

√
η −√

η − 1
√
η +

√
η − 1

+ i π

}
for η ≡ q2

4m2
> 1 ,

= 4
3

g2
s

16π2

1√
η(η − 1)

log

√
1 − η +

√−η√
1 − η −√−η for η < 0 −→

q2→0

4
3

g2
s

8π2
,

= 4
3

g2
s

8π2

1√
η(1 − η)

tan−1

√
η

1 − η
for 0 ≤ η ≤ 1 . (14.14)
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This formula is an example showing that form factors are analytic functions
in the complex q2 plane, with cuts on the timelike axis, as mentioned in
Chap. 10. By a simple replacement 4

3
g2
s → e2, we recover the QED corrections

to the electron magnetic moment FQED
2 (0), first derived by Schwinger,

FQED
2 (0) =

e2

8π2
=
αem

2π
. (14.15)

The anomalous magnetic moment of the electron, i.e. the deviation from its
Bohr magneton value µe = −e/2me, is then µe(αem/2π). A pointlike electron
with a unit electric form factor and a zero anomalous magnetic moment at
the tree level develops its electromagnetic form factors from QED radiative
corrections, changing 1 into 1 + FQED

1 (q2) and 0 into FQED
2 (q2).

Similarly, we find that QCD generates new weak form factors for quarks.
As can be seen from (1) and (11), the modification is

1 → Fcor
1 (q2) = 1 +F1(q

2) , 0 →
[
F2(q

2) , G3(q
2)
]
, 1 → 1 +G1(q

2) .(14.16)

While quantum corrections make unambiguous finite predictions to F2(q
2)

and G3(q
2), all the complexities of loop integrals are present in F1(q

2) [and
hence in G1(q

2) = F1(q
2) − 2F2(q

2)]. Since the variable of integration k2

spans the whole range from 0 to ∞, a glance at (4) or (13) reveals two major
problems of radiative corrections, both present only in F1(q

2):
(i) As k2 → ∞, the integral diverges like d4k/k4, and this divergence

is transformed into a pole 2/ε via the Γ(2 − n
2 ) term contained in the first

line of (13). The ultraviolet divergence (UV) has its origin in the locality of
field theories (x → 0 or equivalently k → ∞); its removal is treated by the
renormalization program.

(ii) At the lower limit k2 → 0 of the integration domain, the term
k2 in the denominator of (4) causes a different kind of infinity called in-
frared divergence (IR). It is identified with the factor du/u of F1(q

2) as
u → 0 in (13). Originating from the massless gluon via its propagator 1/k2,
this IR divergence will be canceled by the same IR divergence of the soft
gluon bremsstrahlung (Fig. 14.3) that accompanies all radiative processes
(Sect. 14.5).

Thus, a study of F1(q
2) provides an excellent exercise for the understand-

ing of both UV and IR divergences. Looking at the numerator of (7) or at
the six terms in (8), we realize that IR and UV divergences come respectively
from the constant term −4p2 · p3γ

µ and the quadratic term (2 − n) 6kγµ 6k
in the integration variable k. The four linear terms in k yield finite results.
Let us explicitly compute F1(q

2) in order to single out these two types of
divergences.

Consider the first part of F1(q
2) in the first line of (13), i.e. the part

that contains the singular Γ(2 − n
2 ) factor, we call it F1,uv(q

2). Besides
Γ(2 − n

2 ) = 2
ε − γE +O(ε), where γE ≈ 0.5772 is the Euler constant, we also
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expand all other terms of F1,uv(q
2) up to order ε such that they can cancel

the singularity 2/ε when multiplied by the latter. The result is

F1,uv(q
2) =4

3

g2
s

16π2

{
−
∫ 1

0

dv log

[
1− q2

4m2
(1 − v2)

]

+
2

ε
− γE + log(4π) − 1 − log

m2

µ2

}
,

−→
q2→0

4
3

g2
s

16π2

[
2

ε
− γE + log(4π) − 1 − log

m2

µ2

]
. (14.17)

On dimensional grounds, a mass scale factor µ must enter the denominator

∆2−
n
2 ≡ [−m2 + q2(1− v2)/4]2−

n
2 of (13) in order to make the latter dimen-

sionally correct for n 6= 4. Indeed, for small ε 6= 0, one can always write the

term ∆
ε
2 as 1 + ε

2 log(∆/µ2) + O(ε2). This arbitrary factor µ2 serves as a
reminder that the decomposition of a divergent integral into an infinite term
and a finite term always involves an ambiguity. Only a coherent procedure
that removes the ε pole and gives finite values independent of µ2 to physical
quantities is meaningful. This is the essence of the renormalization.

The second part of F1(q
2) on the second line of (13) – the part without

the singular Γ(2− n
2 ) – is either finite or infrared divergent. The factor du/u

is the source of IR divergence when u → 0. To neutralize 1/u, we group in
the numerator of the integrand all the terms which are linear and quadratic
in the variable u . They are m2(2u + u2) + q2(−u + u2(1 − v2)/4). These
terms cancel 1/u and yield a finite result denoted by F1,fi(q

2) after the u , v
integrations:

F1,fi(q
2) = 4

3

g2
s

16π2

{
−1 +

3 − 4η√
η(η − 1)

[
log

√
η −√

η − 1
√
η +

√
η − 1

+ iπ

]}
,

−→
q2→0

4
3

5g2
s

16π2
. (14.18)

The remainder (−2m2 + q2), which cannot cancel 1/u, will give rise to an
infrared divergent term, F1,ir(q

2). We have

F1,ir(q
2) = 4

3

g2
s

8π2

∫ 1

0

dv
−2m2 + q2

m2 − 1
4
q2(1 − v2)

∫ 1

0

du

u
−→
q2→0

− 4
3

g2
s

4π2

∫ 1

0

du

u
.

(14.19)

The sum of the three contributions (17), (18), (19) at the limit q2 = 0 gives

F1(0) = 4
3

g2
s

16π2

{
2

ε
− γE + log(4π) − log

(
m2

µ2

)
+ 4 − 4

∫ 1

0

du

u

}
. (14.20)

The UV and IR divergences are represented by 2/ε and
∫ 1

0
du/u respectively.

The reason for writing the explicit expression of F1(0) will be clear later. We
have seen that Γµ(p2, p3), hence F1(q

2), has two types of divergence. Let us
concentrate first on UV, leaving the treatment of IR to Sect. 14.4.
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14.2 Quark Self-Energy

To order g2
s corrections to the tree vertex γµ(1− γ5), besides the diagram of

Fig. 14.2a that we have just considered, there are two more diagrams shown in
Fig. 14.2b, c which also contribute. They are related to the quark self-energy
Σ(p), in which the generic p stands for the external momenta.
The expression for the self-energy of Fig. 14.5 can be written as

−iΣ(p)
def
=

∫
d4k

(2π)4

(
−igsγ

ρ λj

2

) i

6p− 6k −m+ iη

(
−igsγ

σ λj

2

) −igρσ

k2 + iη
. (14.21)

Like the vertex function Γµ(p2, p3) discussed in (4), we can at the outset use
the Feynman–’t Hooft gauge ξ = 1 for the gluon propagator in (21). In the
definition of −iΣ(p), we note that an additional factor (−i) is included, its
convenience is clearly seen in (22). Apart from a common factor, the three
amplitudes of Fig. 14.2 can be written respectively from left to right as

Γµ(p2, p3) ,
i [−iΣ(p2)]

6p2 −m
γµ =

Σ(p2)

6p2 −m
γµ , and γµ Σ(p3)

6p3 −m
. (14.22)

A glance at the integral in (21) shows that both UV and IR divergences are
present in Σ(p). After writing the denominator of (21) as an integral of the
Feynman auxiliary variable x and integrating over k, we obtain

Σ(p) = − (4
3) ig2

s

∫ 1

0

dx

∫
dnk

(2π)n

nm− (n− 2)(6p− 6k)
[k2 − 2p.kx+ (p2 −m2)x]2

,

≡ mA(p2)+ 6pB(p2) ,

A(p2) =4
3

g2
s

(4π)n/2

∫ 1

0

dx
nΓ(2 − n

2
)

[p2x(1− x) −m2x]2−
n
2

= 4
3

g2
s

4π2

(
2

ε
+ ··
)
,

B(p2) =4
3

g2
s

(4π)n/2

∫ 1

0

dx
(2 − n)Γ(2 − n

2
)(1 − x)

[p2x(1− x) −m2x]2−
n
2

= 4
3

−g2
s

16π2

(
2

ε
+ ··

)
.(14.23)

Besides their UV divergences with the ε pole, the dimensionless quantities
A(p2), B(p2) also have their IR divergences coming from x→ 0.
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Fig. 14.5. Fermionic self-energy Σ(p)

The removal of the ultraviolet divergences in Γµ(p2, p3) and Σ(p) is at
the heart of the renormalization program which can be stated as follows:
The ultraviolet infinities encountered in F1(q

2) and Σ(p) can be consistently
removed and the final results become finite if they are expressed in terms of
the renormalized quark mass together with the renormalized quark field. We
now go further by introducing the notion of bare and renormalized quantities.
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14.3 Mass and Field Renormalization

Let us recall the relation between the propagator and the mass of a particle.
The latter is associated with the pole of the former, so the mass is the solution
of the equation obtained by setting to zero the inverse of its propagator.
How can the mass of a fermion be determined if viewed as a cloud of virtual
particles that are continuously being created and destroyed? Starting from a
bare massm0, the fermion develops a change inm0 by interacting with gluons
through loop diagrams, the simplest example Σ(p) is shown in Fig. 14.5. Σ(p)
is called self-energy, i.e. the extra amount of rest mass energy generated by
quantum corrections. For the moment this change is infinite. If the mass is
changed, so is the propagator. The bare fermion propagator is then replaced
by its full or dressed propagator which includes all possible loop diagrams
having two external fermion lines, also called the two-point Green’s function.
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Fig. 14.6. (a) Irreducible 1PI diagram; ( b) reducible 1PR diagram

To compute the dressed propagator, let us define a one-particle irre-
ducible 1PI diagram to be any loop diagram that cannot be split into two
disconnected ones by cutting only a single internal line. Every diagram is
either irreducible (1PI ) or reducible (1PR). An example of 1PI is Fig. 14.6a
while Fig. 14.6b illustrates a 1PR diagram. The reason to select 1PI is that
any 1PR can be decomposed into a set of 1PI without further loops, such
that, if we know how to handle the UV divergences in 1PI , then these UV
divergences are also under control in 1PR.
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Fig. 14.7. (a) Geometric sum of 1PI diagrams; (b) dressed propagator SD(p)
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Dressed Propagator. A dressed propagator is an infinite geometric sum
of 1PI diagrams with two external lines (Fig. 14.7a). Each 1PI by itself is
an infinite sum of diagrams of orders g2

s , g
4
s · · ·, the lowest 1PI starting at g2

s

is the diagram of Fig. 14.5 denoted by −iΣ(p) in (21).
To this order g2

s shown in Fig. 14.7b, the dressed quark propagator SD(p)
is obtained by summing up the geometric series of −iΣ(p). We have

SD(p) =
i

6p−m0
+

i

6p−m0
[−iΣ(p)]

i

6p−m0
+

+
i

6p−m0
[−iΣ(p)]

i

6p−m0
[−iΣ(p)]

i

6p−m0
+ · · ·

=
i

6p−m0

[
1 +

Σ(p)

6p−m0
+

(
Σ(p)

6p−m0

)2

+ · · ·
]

=
i

6p−m0

(
1 − Σ(p)

6p−m0

)−1

=
i

6p−m0 − Σ(p)
. (14.24)

With quantum corrections, the physical mass m is now associated with the
pole of the dressed propagator SD(p) in (24). The pole is no longer the bare
mass m0 but is shifted to m , solution to the equation

6p−m0 − Σ(6p = m) = 0 , or

m = m0 + Σ(6p = m) = m0 +m0A(m2) +mB(m2) . (14.25)

It is important to remark that in the above equation, Σ(p) can be considered
as a function of 6 p, for p2 = (6 p)2. For instance Σ(m) is understood as
Σ(6 p = m). In the expressions of A(p2) and B(p2) given by (23), m must
be understood as m0, since Σ(p) was computed with the bare mass m0 . For
example the B(m2) in (25) must be read as

B(m2) =
4

3

(2 − n) g2
s

(4π)n/2
Γ
(
2 − n

2

) ∫ 1

0

dx
(1 − x)

[m2x(1− x) −m2
0x]

2−
n
2

. (14.26)

Close to the physical pole 6p ≈ m, we write the Taylor expansion

Σ(p) = Σ(m) + (6p−m)
dΣ(p)

d 6p

∣∣∣∣
6p=m

+ O(p2 −m2) . (14.27)

With Σ(m) = m −m0, the denominator of SD(p) in (24) has the following
form for 6p ≈m:

6p−m0 − Σ(p) ≈ 6p−m0 − Σ(m) − (6p−m)
dΣ(p)

d 6p

∣∣∣∣
6p=m

,

≈ (6p−m)

(
1 − dΣ(p)

d 6p

∣∣∣∣
6p=m

)
. (14.28)
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The shift of the mass m0 → m = m0 + Σ(m) not only brings a new pole at
6p = m to the dressed propagator SD(p) but also changes its residue at the
physical pole m:

Bare propagator Dressed propagator

i

6p−m0
−→ SD(p) =

iZq

6p−m
, (14.29)

where Zq is given by

1

Zq
= 1 − dΣ(p)

d 6p

∣∣∣∣
6p=m

. (14.30)

The above expression for Zq is derived by comparing (28) with the inverse of
the dressed propagator given in (24). Indeed

S−1
D (p) =

1

i
(6p −m0 − Σ(p)) =

1

i
(6p−m)

(
1 − dΣ(p)

d 6p

∣∣∣∣
6p=m

)
≡ 6p−m

iZq
.

Equation (30), which relates the residue Zq to the derivative of the self-
energy Σ(p) at the physical mass 6p = m, is in principle formally valid when
Σ(p) and its derivative are finite. However, if they are infinite, (30) might
be misleading since it would give Zq → 0 for dΣ(p)/d 6p| 6p=m → ∞ which is
absurd. To understand this subtlety, let us remark that without interactions,
i.e. at zero order of the coupling constant gs, Zq ≡ 1 , Σ(p) ≡ 0, which is of
course satisfied by (30). The perturbative quantum corrections start at order
g2
s : Σ(p) = O(g2

s ) , Zq = 1 + O(g2
s ). Within the framework of perturbative

calculations in which Zq is derived, (30) should be correctly written as

dΣ(p)

d 6p

∣∣∣∣
6p=m

= 1 − 1

Zq
=
Zq − 1

Zq
= Zq − 1 + O(g4

s ) . (14.31)

The above relation satisfies the O(g2
s ) expansion. In the spirit of perturbative

calculations, one has

Zq = 1 +
dΣ(p)

d 6p

∣∣∣∣
6p=m

,
√
Zq = 1 + 1

2

dΣ(p)

d 6p

∣∣∣∣
6p=m

. (14.32)

Let us recall that the propagator is the Fourier transform of a two-point
function. The bare propagator is associated with

〈
0
∣∣T [ψ0(x)ψ0(y)]

∣∣ 0
〉

of
the bare field ψ0(x), the dressed propagator SD(p) is computed from the
bare field ψ0(x) too [by summation over the geometric series in (24)].

This two-point function definition of the propagator suggests that if we
scale the bare field ψ0 by 1/

√
Zq and define the renormalized field ψ by

ψ0(x) =
√
Zqψ(x), the infinite residue Zq of SD(p) can be absorbed by ψ0,
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and SD(p) is promoted to the renormalized propagator S̃ren(p) with pole at
6p = m and with residue = 1. Thus,

SD(p) =

∫
dx e−ip·x

〈
0
∣∣T (ψ0(x)ψ0(0))

∣∣ 0
〉

=
iZq

6p−m
.

Putting ψ0(x) =
√
Zqψ(x) , one has

S̃ren(p) =

∫
dx e−ip·x

〈
0
∣∣T (ψ(x)ψ(0))

∣∣ 0
〉

=
i

6p−m
. (14.33)

Let us clarify again the meaning of the shift of the fields proposed in
(33). We have two quantities m and Zq governed by two equations (25)
and (31). If they can be solved, we would obtain physical quantities m and
Zq and could stop here. It must be emphasized that the renormalization
of masses and fields has nothing directly to do with infinities encountered
in the computation of the self-energy Σ(p). It would still be necessary even
in a theory in which loop integrals were convergent. However, since Σ(p) is
infinite, m cannot be computed but is only fixed by the physical mass. The
bare mass parameter m0 (which is infinite) is adjusted to Σ(6p = m) in (25) to
cancel its UV divergences and giving the physical finite mass m . Similarly,
the infinite Zq is adjusted to bare field ψ0 (which is also infinite) to define the
renormalized field ψ = ψ0/

√
Zq, such that the propagator of a renormalized

field has a pole at the physical mass and has a residue equal to unit, thus

Bare Interaction Dressed Renormalized

i

6p−m0
−→ Σ(p) −→ iZq

6p −m
−→ i

6p−m
.(14.34)

The procedure by which the UV divergence in Zq is removed from the theory
is referred to as the field strength renormalization or the wave function renor-
malization, likewise, the removal of the UV divergence in Σ(p) is referred to
as the mass renormalization. The role of Zq (and other Zj introduced later)
is essential here and in the next chapters.

The concept of removal of the infinities is not restricted to quantum
field theory. Even in classical electrodynamics, the self-energy of a pointlike
electron which interacts with its own electric field is also divergent. The idea
of subtraction of infinities – the core of the renormalization concept – was
first suggested by Kramers. He observed that although the self-energy of a
pointlike electron is infinite, actually the meaningful quantity is the difference
between the self-energy of the free electron and that of the electron bound in
an atom. Both of these self-energies diverge, but their difference is finite.

Counterterms. A counterterm is formally an infinite parameter intro-
duced in the Lagrangian to remove (or absorb) the UV divergences by ad-
justing the bare parameters. After a subtraction of the infinities, the finite
parts (also called the renormalized quantities) are constrained to obey renor-
malization conditions (also called normalization or subtraction conditions or
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prescriptions). In the case discussed here, the renormalization conditions dic-
tate that the residue of the renormalized propagator is 1, and Σ(m)+m0 = m.
The number of counterterms must be limited, independently of the pertur-
bative orders, otherwise the theory is nonrenormalizable.

For this renormalization program to work, it is essential that the original
Lagrangian includes all interactions generated by the UV parts of Feynman
amplitudes. This is the case of the standard electroweak theory and QCD. If
for some reason, the loop integrals produce a UV term which has a covariant
structure that the original Lagrangian does not possess, this UV divergence
cannot be removed. For instance, if the magnetic moment F2(q

2) found in
(14) were infinite, there is no way to absorb its divergence into the original
QCD or QED Lagrangian since the latter does not possess such a Pauli mag-
netic interaction (gs/m) [∂µA

k
ν(x)−∂νA

k
µ(x)] ψ(x)λkσ

µνψ(x) from the start.
The fact that F2(q

2) is finite is not an accident, it reveals the renormalizabil-
ity of QCD. The renormalizability of QCD and QED forbids the presence of
the Pauli magnetic interaction although Lorentz and gauge invariances allow
such a term. The magnetic interaction will provoke an avalanche of infini-
ties in loop integrals since the dimensional coupling constant gs/m implies
a momentum dependence of the vertex. In turn it makes the loop integrals
more and more divergent with increasing perturbative orders and an infinite
numbers of counterterms are needed. This interaction is nonrenormalizable.

14.3.1 Renormalized Form Factor F̃ ren
1 (q2)

Having outlined the concept of renormalization, we now apply the method
to our problem of removing the ultraviolet divergences in F1(q

2) and Σ(p).

This procedure promotes F1(q
2) to the renormalized form factor F̃ ren

1 (q2),

and Σ(p) to the renormalized self-energy Σ̃ren(p); both of them are free of
UV divergences. Let us see how it works.

In the Lagrangian L, the bare quark fields ψ0(x) coupled with the boson
field Wµ(x) can be written as (the weak coupling constant gW is implicit)

L = ψ
0

q2
(x)γµ(1 − γ5)ψ

0
q3

(x)Wµ(x) + kinetic term , (14.35)

where the kinetic term ψ0(x)(i 6∂ −m0)ψ
0(x) is applied to both quark fields

ψ0
q2

(x) and ψ0
q3

(x). We define the renormalized fields ψq2
(x) and ψq3

(x) by

introducing the counterterms
√
Zq2

and
√
Zq3

. The W boson field Wµ(x),
not affected by gluons, is untouched. We write

ψ0
qj

(x) =
√
Zqj

ψqj
(x) , j = 2, 3 . (14.36)

Putting ψ0
qj

(x) =
√
Zqj

ψqj
(x) back into (35), the original L is now split into

two parts:

L = Lren + Lct ;

Lren = ψq2
(x)γµ(1 − γ5)ψq3

(x)Wµ(x) ,

Lct = δq ψq2
(x)γµ(1 − γ5)ψq3

(x)Wµ(x) ; δq =
√
Zq2

√
Zq3

− 1 , (14.37)
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the kinetic term of (35), which should appear in the above equation, will be
given later in (44). The role of Lct is to cancel the UV divergences of Lren.
Physical quantities, which are obtained by summing the contributions from
both Lren and Lct, are free of UV divergences.

To first order of δq, Lct gives a contribution δq γ
µ(1 − γ5) to the vertex

γµ(1−γ5). Note that δq is O(g2
s ). To the same g2

s order, Lren gives Γµ(p2, p3)
in (12) for which m is now understood as the renormalized mass. The sum of
δq γ

µ(1−γ5) with Γµ(p2, p3) is the ultraviolet-convergent renormalized vertex

function Γ̃µ
ren(p2, p3) which replaces Γµ(p2, p3):

Γµ(p2, p3) −→ Γ̃µ
ren(p2, p3) = Γµ(p2, p3) + δq γ

µ(1 − γ5) . (14.38)

Comparing (38) with (11), we get the renormalized form factor F̃ ren
1 (q2)

which replaces F1(q
2):

F1(q
2) −→ F̃ ren

1 (q2) = F1(q
2) + δq . (14.39)

Our next task is to compute δq. From (32) and (37), we have

δq =
1

2

{
dΣ(p2)

d 6p2

∣∣∣∣
6p2=m2

+
dΣ(p3)

d 6p3

∣∣∣∣
6p3=m3

}
=

dΣ(p)

d 6p

∣∣∣∣
6p=m

, (14.40)

since we take m2 = m3 = m. The derivative of Σ(p) can be readily performed
using Σ(p) given by (23). We obtain

δq =
dΣ(p)

d 6p

∣∣∣∣
6p=m

= B(m2) + 2m2 dA(p2)

dp2

∣∣∣∣
p2=m2

+ 2m2 dB(p2)

dp2

∣∣∣∣
p2=m2

= 4
3

g2
s

(4π)
n
2

Γ
(
2 − n

2

) ∫ 1

0

dx(1 − x)

[−m2x2]2−
n
2

{
−2 + 3ε+

2ε

x

}
.

Developing all the terms of the above equation in a series of ε, we get

δq = 4
3

g2
s

16π2

[−2

ε
+ γE − log(4π) + log

(
m2

µ2

)
− 4 + 4

∫ 1

0

dx

x

]
. (14.41)

Comparing (41) with F1(0) as given by (20), we get a remarkable result; to
wit, the quantity δq exactly cancels F1(0):

δq + F1(0) = 0 , or
dΣ(p)

d 6p

∣∣∣∣
6p=m

+ F1(0) = 0 . (14.42)

This important result, due to the current conservation, in fact mimics the
Ward identity in QED (Problem 14.3) according to which the apparently
unrelated quantities F1(0) and dΣ(p)/d 6p|6p=m turn out to satisfy (42). In
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the case considered here, since we take m2 = m3 = m, the weak vector
current is conserved, hence we also obtain (42). With (39), we have

F̃ ren
1 (q2) = F1(q

2) − F1(0) . (14.43)

The expression (43) is pleasantly simple. Both F1(q
2) and F1(0) are sepa-

rately divergent, but their difference F̃ ren
1 (q2) is finite (free of UV divergences

more precisely). The 2/ε pole of F1,uv(q
2) in (17) cancels the same 2/ε pole

of F1(0). The counterterm used to absorb the ultraviolet divergence in F1(q
2)

is precisely the value of F1(q
2) itself at q2 = 0.

From now on, F1(q
2) is replaced with F̃ ren

1 (q2) = F1(q
2) − F1(0). No-

tice that the equation F̃ ren
1 (0) = 0 represents the renormalization condition.

When we look back at Fcor
1 (q2)|ren = 1 + F̃ ren

1 (q2) in (16), we realize that at
q2 = 0, QCD does not bring any modification to Fcor

1 (0)|ren.

14.3.2 Important Consequence of Mass Renormalization

To renormalize the quark mass, we need a counterterm ∆m0 to be added to
the bare mass m0 to get the physical mass m, ∆m0 + m0 = m. Together
with Zq, this ∆m0 brings in Lct a new term to be added to Σ(p). Their sum

is the renormalized self-energy Σ̃ren(p), which is found to be

Σ̃ren(p) = Σ(p) − (Zq − 1)(6p−m) − Zq ∆m0 . (14.44)

The generic p stands for p2 or p3 and m stands for m2 or m3. Like δq in
(37), the last two terms of (44) arise when we put ψ0 =

√
Zq ψ in the kinetic

expression ψ0(i 6∂−m0)ψ
0 of L in (35). Like (38) where Γµ(p2, p3) is replaced

with Γ̃µ
ren(p2, p3), now Σ(p) is replaced with Σ̃ren(p). Thus, the amplitudes

of Fig. 14.2b, c are now expressed in terms of Σ̃ren(p). From (22), they are
given by

Σ̃ren(p2)

6p2 −m2
γµ and γµ Σ̃ren(p3)

6p3 −m3
. (14.45)

Now comes an important result which eliminates the contributions of both
Fig. 14.2b, c. The renormalization condition, which sets the pole of the
renormalized propagator S̃ren(p) to be m, implies that Σ̃ren(6 p = m) = 0.
This equation is obtained from (25) and (44). Indeed, keeping in mind that
Zq = 1 + O(g2

s ) and ∆m0 is also O(g2
s ), one has

Σ̃ren(6p = m) = Σ(6p = m) − Zq∆m0 = Σ(6p = m) − ∆m0 = 0 . (14.46)

Not only is Σ̃ren(6p = m) equal to zero, its derivative at 6p = m also vanishes,
using (44) and (40) and remembering that δq = Zq − 1. We therefore have

Σ̃ren(6p = m) = 0 and
dΣ̃ren(6p)

d 6p

∣∣∣∣∣
6p=m

= 0 . (14.47)
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Equation (47) has an important consequence which forces (45) to vanish.
The demonstration is straightforward using the Taylor expansion similar to
(27). Indeed, when

Σ̃ren(6p = m) = 0 and
d Σ̃ren(6p)

d 6p

∣∣∣∣∣
6p=m

= 0 , then
Σ̃ren(m)

6p−m
= 0 .(14.48)

From (45) and (48), we note that after the quark gets its renormalized mass,
the self-energy amplitude of each of the two diagrams (Fig. 14.2b, c) vanishes.
This important property, established for fermionic fields, can be generalized
to boson fields too. We arrive at the essential point: for external particles
(fermion or boson) on the mass-shell, it is not necessary to include self-energy
corrections. Via the self-energy Σ(p), the two diagrams in Fig. 14.2b–c have
no other role than to provide indirectly the counterterm δq to the vertex
γµ(1 − γ5) in (38), then cease to contribute.

The detailed studies in the three previous sections can be summarized
as follows. The ultraviolet divergences of the three diagrams in Fig. 14.2 are
absorbed by the renormalization procedure into the bare parameters (fields
and masses) of the Lagrangian. It results in replacing Γµ(p2, p3) with the

renormalized Γ̃µ
ren(p2, p3), leading to the key result F1(q

2) −→ F̃ ren
1 (q2) =

F1(q
2) − F1(0) which is ultraviolet convergent.

14.4 Virtual Gluon Contributions

We have determined F̃ ren
1 (q2), the most important quantity in the calculation

of virtual gluon corrections to the τ (P ) → ντ (p1) + q2(p2) + q3(p3) decay
rate. As noted before, to order g2

s correction to the rate, we need the sum –
denoted by MVi – of the tree amplitude of Fig. 14.1 with the renormalized
loop amplitude of Fig. 14.2. Their interference in the square |MVi|2 is O(g2

s ):

MVi =
GFVq2q3√

2
u(p1)γµ(1 − γ5)u(P )

{
u(p2)[γ

µ(1 − γ5) + Γ̃µ
ren(p2, p3)]v(p3)

}
.

To lighten the computations of Γµ(p2, p3), hence of Γ̃µ
ren(p2, p3) or MVi, we

assume from now on m = 0. With m = 0, the expression for Γµ(p2, p3) is
considerably simpler. The vector current is conserved, and of course the Ward
identity holds in (42). Going back to (12), we see that only F1(q

2) = G1(q
2)

survives, while F2(q
2) = G3(q

2) = 0. Then

Γ̃µ
ren(p2, p3) = γµ(1 − γ5)F̃

ren
1 (q2) .

Until now, we have postponed the problem of infrared divergence (IR) which

occurs in F1(q
2), hence in F̃ ren

1 (q2). Now is the time to treat it together with
the real gluon emission process, also called bremsstrahlung.
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The second part of F1(q
2) in the second line of (12) – that without the

singular Γ(2 − n
2 ) – is free of UV divergence. It has only IR divergence. To

handle the latter, since with
∫ 1

0
du/u in (19) we can go no further, we may

try to parameterize the IR of F1(q
2) again as poles in ε, on equal footing

with UV.
This can be done by going back to our original (9) and keeping every-

where the Γ(3 − n
2 ) which is equal to 1 for n = 4.

The denominator −D(x, y) = m2(x + y)2 − q2xy on the second line of
(12) is always written under the original form [−D(x, y)]3−

n
2 as in (9), i.e. we

keep ε 6= 0 even if the UV divergences are absent because we would like to
parameterize the IR divergences by the ε pole too. As for the first part of
F1(q

2) appearing on the first line of (12) with Γ(2− n
2
), we rewrite it in terms

of Γ(3 − n
2 ) using Γ(2 − n

2 ) = 2 Γ(3 − n
2 )/(4 − n). With the relations

∫ 1

0

dx xa−1(1 − x)b−1 =
Γ(a)Γ(b)

Γ(a+ b)
, and z Γ(z) = Γ(1 + z) , (14.49)

we get altogether from (12), with m = 0,

F1(q
2) =

4

3

g2
s

2nπn/2

Γ(3 − n
2 )[Γ(n

2 − 1)]2

Γ(n − 2)

[ −8

(4 − n)2
+

2

4 − n
− 2

](
−q2

)n
2
−2

,

≡ g2
s A(n)

(
+q2

)n
2
−2

exp
(
i
nπ

2

)
, (14.50)

where

A(n) =
4

3

Γ(3 − n
2
)[Γ(n

2
− 1)]2

Γ(n− 2) 2nπn/2

[ −8

(4 − n)2
+

2

4 − n
− 2

]
.

Due to the masslessness of both the gluon and the fermion, the double pole
1/ε2 in (50) has a pure IR origin. It comes from

∫ 1

0

dx

∫ 1−x

0

dy
1

(x y)3−
n
2

=
4

(4 − n)2
[Γ(n

2 − 1)]2

Γ(n− 3)
.

Since we are free to continue analytically any result to n ≥ 4, from (50) we

find that F1(0) = 0, and (38) becomes Γ̃µ
ren(p2, p3) = γµ(1−γ5)F1(q

2). Then

MVi =
GFVq2q3√

2
u(p1)γµ(1 − γ5)u(P )

×
{
u(p2)γ

µ(1 − γ5)
[
1 + F1(q

2)
]
v(p3)

}
. (14.51)

Remark. As F1(0) = 0 = δq, one may suspect that the UV divergence in

F1(q
2) could not be removed since F̃ ren

1 (q2) = F1(q
2). In fact, F1(0) vanishes

only in the approximation m = 0. However, as explicitly written in (20),
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F1(0) contains both UV and IR divergences, its vanishing is equivalent to
the cancelation of a UV by an IR. Since these two kinds of divergence are
parameterized by the same 4 − n poles, the simple pole 2/(4 − n) in (50) is
understood as coming from an IR divergence which replaces a UV, the latter
is implicitly removed by the interchange of the UV and IR poles which is
imposed by F1(0) = 0. In other words, all the poles in (50) represent IR.

For timelike q2 > 4m2, the form factor F1(q
2) develops its imaginary

part, represented by exp(i n π
2

). Putting the expression of F1(q
2) in (50) into

MVi in (51), after averaging the spin of the initial τ lepton state, as well as
summing the spins and colors of the final states, we obtain to order g2

s

1
2

∑

spin,color

|MVi|2 = g2
s B(q2) Tr[ 6p1γµ 6Pγν (1 − γ5)] Tr[ 6p2γ

µ 6p3γ
ν (1 − γ5)] ,

B(q2) ≡NcG
2
F|Vq2q3

|2
{
2A(n) cos

nπ

2

}(
q2
)n

2
−2

. (14.52)

This g2
s order of |MVi|2 is the interference between the tree amplitude of

Fig. 14.1 and the renormalized loop amplitude of Fig. 14.2. Having obtained
|MVi|2 in (52), we go on to compute the decay rate ΓVi by using the formulas
of Chap. 4 as in 4 dimensions, with only the replacement of 4 by n for the
phase space integral. Thus,

ΓVi =
1

2M
g2
s

∫
dn−1p1

2E1 (2π)n−1
B(q2) Tr[ 6p1γµ 6Pγν(1 − γ5)]

(2π)n

(2π)2n−2

×
∫ ∫

dn−1p2

2E2

dn−1p3

2E3
Tr[ 6p2γ

µ 6p3γ
ν(1 − γ5)]δ

(n)(p2 + p3 − q) . (14.53)

The double integration
∫ ∫

dn−1p2 dn−1p3 of (53) is symmetric by inter-
changing p2 and p3. Therefore the contribution of the γ5 in the integrand
Tr[ 6p2γ

µ 6p3γ
ν (1− γ5)] vanishes because of its p2–p3 antisymmetric character.

Only terms symmetric in the µ–ν permutation remain. In turn, it renders
the γ5 of Tr[ 6p1γµ 6Pγν(1 − γ5)] on the first line of (53) superfluous.

We compute now the double integration of (53) denoted by Jµν(q2):

Jµν(q2) ≡
∫ ∫

dn−1p2

2E2

dn−1p3

2E3
Tr[ 6p2γ

µ 6p3γ
ν ] δ(n)(p2 + p3 − q) . (14.54)

First we notice that qµJ
µν(q2) = 0 because of m2 = p2

2 = p2
3 = 0, implying

that Jµν(q2) must have the structure Jµν(q2) = (−gµνq2 + qµqν)L(q2).
Since Jµν(q2) is a function of q2, it is convenient to use the center-of-

mass frame where q = p2 + p3 = 0. The variable qµ is (
√
q2, q = 0) and

2E2 = 2E3 =
√
q2. We multiply the left and the right sides of (54) by gµν ,

and integrate over dn−1p3 to get rid of δn−1(p2 + p3 − q). The result is

(1 − n)L(q2) = 2(2 − n)

∫
dn−1p2

2E2

1

2E3
δ(E2 +E3 −

√
q2) . (14.55)
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As remarked before, Tr[ 6p2γ
µ 6p3γ

ν ] = 4 [pµ
2p

ν
3 +pν

2p
µ
3 −(p2 ·p3)g

µν ] for n 6= 4 in
(54). The n-dimensional solid angle is defined by n−1 angles: θ, θ1, · · · , θn−2,

Ωn =

∫
dΩn =

∫ π

0

dθ(sin θ)n−2

∫ π

0

dθ1(sin θ1)
n−3 · · ·

∫ 2π

0

dθn−2 .

Using (49), we now demonstrate the following useful formulas

Ik ≡
∫ π

0

dθ(sin θ)k =

∫ +1

−1

d cos θ(1 − cos2 θ)
k−1

2 =

∫ 1

0

dx x−
1
2 (1 − x)

k−1

2

=
Γ(1

2)Γ[ 12(k + 1)]

Γ[ 12(k + 2)]
, I0 = π −→ Γ(1

2 ) =
√
π ,

Ωn =

{√
π Γ[ 1

2
(n− 1)]

Γ(n
2
)

}
· · ·
{√

πΓ(1
2
[n− (n− 2)])

Γ(1
2
[n− (n− 3)])

}
× (2π) =

2 πn/2

Γ(n
2
)
. (14.56)

With (56), the quantity dn−1p2/2E2 in (55) can be written as

dn−1p2

2E2
=
En−3

2 dE2

2
Ωn−1 = En−3

2

π
n−1

2

Γ(n−1
2

)
dE2 . (14.57)

Putting (57) back into (55), we integrate overE2 to eliminate the last function

δ(2E2 −
√
q2). Using (n − 1)Γ[ 1

2
(n− 1)] = 2 Γ[ 1

2
(n + 1)], we obtain

Jµν(q2) =
(n− 2) π

n−1

2

2n−2 Γ(n+1
2

)
(q2)

n
2
−2
[
−q2 gµν + qµqν

]
. (14.58)

We now insert the above expression of Jµν(q2) into (53); the product of
Tr[ 6p1γµ 6Pγν ] with the tensor [−q2 gµν + qµqν ] is found to be

[−q2 gµν + qµqν ] [Tr[ 6p1γµ 6Pγν ] = 2M4(1 − ξ)[1 + (n− 2)ξ] , (14.59)

where ξ = q2/M2. The remaining integral dn−1p1 in (53) is simple in the
rest frame of the decaying τ lepton. Using (P − p1)

2 = (M2 − 2ME1) = q2,

∫
dn−1p1

2E1 (2π)n−1
= Ωn−1

∫
En−2

1 dE1

2E1 (2π)n−1
=

∫
En−3

1 dE1

Γ(n−1
2 ) (4π)

n−1

2

=
Mn−2

22n−3 π
n−1

2 Γ(n−1
2 )

∫ 1

0

dξ (1 − ξ)n−3 . (14.60)

Putting together (52)–(60), we get

ΓVi

Γ0
=

[
Nc|Vq2q3

|2 αs

]
25ε π

3
2ε Γ(2 − 1

2ε)

M3εΓ[ 12(3 − ε)] Γ[ 12 (5 − ε)]

∫ 1

0

dξ ξ−ε (1 − ξ)2−ε[1 + (2 − ε) ξ]

×
{

Γ(1 + 1
2ε)Γ(1 − 1

2ε)

Γ(2 − ε)
cos(1

2πε)

[
− 4

ε2
+

1

ε
− 1

]}
, (14.61)
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where Γ0 = G2
FM

5/192π3 already given in (13.21) is the QCD uncorrected
decay rate τ− → ντ +q2+q3 of Fig. 14.1, in which colors (of massless quarks)
are not yet summed, i.e. the factor Nc is not yet included.

As we will see, the IR divergent singular ε pole terms in (61) are exactly
canceled by those of the bremsstrahlung rate that we are going now to com-
pute from the two diagrams in Fig. 14.3, such that the sum of (61) and (81)
is infrared convergent. We remark further that both (61) and (81) share a
common regular term represented by the first factor, i.e. the first line on the
right hand side of (61). Therefore, we keep untouched this factor and we only
expand up to O(ε2) the regular terms Γ(1+ 1

2ε)Γ(1− 1
2ε)/Γ(2−ε)]×cos(1

2πε)
in the second factor (second line) represented by the curly brackets {} of (61).
When these ε2 expansions are multiplied by the poles −4/ε2 + 1/ε−1 in {},
some finite terms emerge. This expansion of the regular terms up to second
order in ε is therefore mandatory. We obtain for the curly brackets [second
line of (61)] the following result

{} = − 4

ε2
+

4γE − 3

ε
− 2γ2

E + 3γE − 4 +
2π2

3
+ O(ε) , (14.62)

using (49) together with the expansion up to z2 of Γ(1 + z) for z � 1,

Γ(1 + z)−→
z→0

1 − γE z +
6γ2

E + π2

12
z2 + O(z3) . (14.63)

14.5 Real Gluon Contributions

The amplitude of the two diagrams in Fig. 14.3 can be written as

MRe =
GF Vq2q3

gs√
2

u(p1)γµ (1 − γ5)u(P ) (14.64)

× u(p2)

[
6εk′

λi

2

6p2+ 6k′
(p2 + k′)2

γµ − γµ 6p3+ 6k′
(p3 + k′)2

6εk′

λi

2

]
(1 − γ5) v(p3).

In (64), εα(k′, i) is the gluon polarization vector associated with the eight
SU(3) color matrices λi. To simplify the trace calculation of many γ matrices,
we write 6εk′ 6p2 = − 6p2 6εk′ + 2p2 · εk′ , and 6p3 6εk′ = − 6εk′ 6p3 + 2p3 · εk′ , and
apply the Dirac equation to the spinors u(p2), v(p3) in (64). The transition
probability |MRe|2, summed and averaged over spins and colors in the usual
manner, can best be expressed in terms of a tensor T µν(p2, p3, k

′) defined
below. We find

1
2

∑

color,spins

|MRe|2 = g2
s

Nc

3
G2

F |Vq2q3
|2 Tr[ 6p1γµ 6Pγν(1 − γ5)] T µν(p2, p3, k

′),

T µν(p2, p3, k
′) = Tr

{
6p2

[
2pα

2 + γα 6k′
p2 · k′

γµ − γµ 2pα
3 + 6k′γα

p3 · k′
]

× 6p3

[
γν 2pβ

2+ 6k′γβ

p2 · k′
− 2pβ

3 + γβ 6k′
p3 · k′

γν

]
(1 − γ5)

}
(−gαβ), (14.65)
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the factor −gαβ comes from the summation over the gluon polarizations.
Using the fact that the bremsstrahlung rate is obtained by integration over
the symmetric phase space in p2, p3, k

′, it is easy to show that the γ5 can be
dropped from T µν(p2, p3, k

′). Then the integration of the latter will result
in a term symmetric in µ and ν . This in turn renders irrelevant the γ5 in
Tr[ 6p1γµ 6Pγν(1 − γ5)] of (65). Thus both γ5 can be eliminated.

14.5.1 Infrared Divergence

As explicitly shown in T µν(p2, p3, k
′), the denominators p2 · k′ and p3 · k′

indicate that the real gluon emission rate is divergent in the limit where the
energy-momentum k′ of the gluon tends to zero. For massless quarks, these
denominators vanish also when both the gluon and the quark are emitted
in parallel, regardless of the gluon energy. In these limits, the processes
with radiated gluons cannot be distinguished from those without gluons.
The bremsstrahlung is thus an essential part of radiative corrections in this τ
decay as well as in all other QCD (QED) reactions with real gluons (photons)
emitted. The tensor T µν(p2, p3, k

′) is found to be

1

4
T µν(p2, p3, k

′) = − gµν

[
8s2

ut
+

8s

u
+

8s

t
+ 2(n− 2)

(
u

t
+
t

u

)
+ 4(n− 4)

]

− pµ
2p

ν
2

[
16

t

]
− pµ

3p
ν
3

[
16

u

]
− k′µk′ν

[
8(n− 4)s

ut

]

+ (pµ
2 p

ν
3 + pν

2p
µ
3 )

[
16s

ut
+

8

u
+

8

t

]

+ (pµ
2k

′ν + pν
2k

′µ)

[
8s

ut
+

4(n− 4)

t
+

4(n− 2)

u

]

+ (pµ
3k

′ν + pν
3k

′µ)

[
8s

ut
+

4(n− 4)

u
+

4(n− 2)

t

]
, (14.66)

where the three invariants s, t, u are defined as follows, only two of them are
independent on account of the momentum conservation

s = 2 p2 · p3 , t = 2 p2 · k′ , u = 2 p3 · k′ , s+ t+ u = q2 .

For m2 = m3 = m, and a fortiori for m = 0, the conservation of the vector
current at the vertex Wq2q3 in Fig. 14.3 implies that qµT µν(p2, p3, k

′) =
qνT µν(p2, p3, k

′) = 0, where q = p2 + p3 + k′. We can verify this property by
multiplying the right-hand side of (66) by (p2 +p3 +k′)µ, and check that the
product effectively is equal to zero.

Using (65), the decay width ΓRe ≡ Γ(τ → ντ + q2 + q3 + g) is

ΓRe =
1

2M

Nc

3
G2

F |Vq2q3
|2 g2

s

∫
dn−1p1

(2π)n−12E1
Tr[ 6p1γµ 6Pγν ]

× (2π)n

(2π)3n−3

∫

PS3

T µν(p2, p3, k
′) , (14.67)
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where the three-body phase space integral is denoted by
∫
PS3,

∫

PS3

≡
∫

dn−1p2

2E2

dn−1p3

2E3

dn−1k′

2Ek′

δn(p2 + p3 + k′ − q) . (14.68)

No matter how complicated the integration
∫
PS3

T µν(p2, p3, k
′) is, it results

only in a function of the momentum transfer q2. Moreover, this phase space
integration

∫
PS3

T µν(p2, p3, k
′) must have the structure −q2 gµν + qµqν , due

to qµT µν(p2, p3, k
′) = qνT µν(p2, p3, k

′) = 0, so that

∫

PS3

T µν(p2, p3, k
′) = (−q2 gµν + qµqν)H(q2) . (14.69)

To compute H(q2), we multiply the left- and the right-hand sides of (69) by
gµν . Using the expression of T µν(p2, p3, k

′) in (66), we get

q2H(q2) =
8(2 − n)

1 − n

∫

PS3

{
4

[
s2

ut
+
s

u
+
s

t

]
+ (n− 2)

[
u

t
+
t

u

]
+ 2(n− 4)

}
.

Since
∫
PS3

is completely symmetric in the three integration variables p2, p3,
and k′ and all of these three particles are massless, the integration of the
three variables s, t, and u are completely equivalent because of the possible
interchange among p2, p3, and k′. More precisely, we have

∫

PS3

(u
t

)
=

∫

PS3

(
t

u

)
.

Then using (s+ t+ u) = q2, we obtain a simple form for H(q2):

H(q2) =
16

q2
n− 2

n− 1

∫

PS3

[
2 sq2

ut
+ (n− 2)

u

t
+ (n− 4)

]
. (14.70)

Our next task is to evaluate the three-body phase space integral
∫
PS3

.

14.5.2 Three-Particle Phase Space

It is instructive to see how
∫
PS3

can be decomposed and computed, first
in n = 4 dimensions. By energy-momentum conservation, there are in all
3×3−4 = 5 independent variables that describe the three-body phase space.
Since

∫
PS3

is a function of q2, it may be convenient to choose the rest frame

of qµ , i.e. q = p2+p3 +k
′ = 0: qµ = (

√
q2, 0). The three momenta p2,p3,k

′

define a plane P in this frame. The vector k
′ is fixed by E2, E3 and the angle

θ between p2 and p3. Energy conservation restricts θ in terms of E2, E3. So
only E2 and E3 are independent. Thus for the three massless particles:

Ek′ =
√
E2

2 +E2
3 + 2E2E3 cos θ ,

2E2E3 cos θ = q2 + 2E2E3 − 2
√
q2(E2 + E3) . (14.71)
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The three remaining independent variables can be chosen as the angular
orientation of p2,p3, and k

′. For instance, two angles, denoted by Ω to
determine the vector p2, and one angle Φ to fix the plane P around p2.
Using

∫
d3k′ δ3(p2 + p3 + k′ − q) = 1, we have for m2 = m3 = 0,

∫

PS3

(n = 4) =

∫
dΩ

∫ 2π

0

dΦ

∫
E2dE2

2

∫
E3dE3

2

×
∫ +1

−1

d cos θ

2Ek′

δ
(
E2 +E3 +Ek′ −

√
q2
)
. (14.72)

We remove the last δ-function by performing the cos θ integration, using

δ{f(x)} =
δ(x− x0)

|f ′(x)|x=x0

→ δ
(
E2 + E3 + Ek′ −

√
q2
)

=
δ(cos θ − z)

dEk′/d cos θ|z
,

where z = cos θ0 is solution to (71) for fixed E2, E3. From (71), we have

dEk′

d cos θ
=
E2E3

Ek′

=⇒
∫

d cos θ

2Ek′

δ
(
E2 +E3 +Ek′ −

√
q2
)

=
1

2E2E3
, (14.73)

and so we obtain

∫

PS3

(n = 4) =
1

23

∫
dΩ

∫ 2π

0

dΦ

∫

4

dE2 dE3 = π2

∫

4

dE2 dE3 . (14.74)

Due to (71), the E2 and E3 integration domain 4 is restricted by

|q2 + 2E2E3 − 2
√
q2(E2 + E3)| ≤ 2E2E3 , (14.75)

which is translated into a rectangular isosceles triangle limited by three lines
in the (E2, E3) plane: E2 = 1

2

√
q2, E3 = 1

2

√
q2, and E2 +E3 = 1

2

√
q2.

A digression. In the general case of a particle A decaying into 3 others,
say a1 + a2 + a3, the squared decay amplitude multiplied by the phase space
volume (72) will give the double distribution dΓ/(dEj dE`) of aj , a` energies.
The kinematic result in (74) indicates that a plot of dΓ/(dEj dE`) is a
powerful tool for investigating the decay dynamics, as suggested by Dalitz.

Indeed, if the amplitude is constant, the events will be uniformly dis-
tributed in the 4 domain according to (74). On the other hand, any dy-
namical specific structure of the amplitude will be immediately revealed by a
characteristic density of events in this plot. A concentration of events which
cluster along a line in the 4 domain of Ej, E` corresponds to the presence
of a resonance formed by aj and a`: A → ak + B follows by B → aj + a`.
Many hadronic resonances are found by this method. The angular Ω and
Φ distributions dΓ/(dΩdΦ), on the other hand, provide useful information
on the spin and intrinsic parity of the decaying particle A, once the decay
amplitude squared is incorporated in (72).
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14.5.3 Bremsstrahlung Rate

Going back to our case of (68) and (70), we first integrate over the gluon
momentum dn−1k′ to get rid of the δn−1(p2 + p3 + k′ − q), similar to (72).
Together with (56) and (57), we write

dn−1p3

2E3
=
En−3

3 dE3

2
Ωn−2 dθ(sin θ)n−3 , with Ωn−2 =

2π
n−2

2

Γ(n−2
2

)
,

dθ(sin θ)n−3 = d cos θ (1 − cos θ)
n
2
−2 (1 + cos θ)

n
2
−2 . (14.76)

From the isosceles triangle in (75), one has
√
q2 ≤ 2(E2 + E3) ≤ 2

√
q2, it

proves convenient to introduce two variables x, y related to E2, E3 by

E2 =

√
q2 x

2
, E3 =

√
q2(1 − xy)

2
, dE2 dE3 =

q2

4
x dx dy , (14.77)

then from (71), we get

1 − cos θ =
2(1 − y)

1 − xy
, 1 + cos θ =

2y(1 − x)

1 − xy
. (14.78)

Using (73), the remaining δ(E2 +E3 +Ek′ −
√
q2) is replaced by Ek′/(E2E3)

after the cos θ integration. With (57), (76), (77), and (78), the n-dimension
three-body phase space

∫
PS3 defined in (68) can now be written as

∫

PS3

=
πn− 3

2

2n−1

[q2]n−3

Γ[ 12 (n− 1)] Γ[(1
2(n− 2)]

×
∫ 1

0

dx xn−3 (1 − x)
n
2
−2

∫ 1

0

dy [y (1 − y)]
n
2
−2 . (14.79)

Using (77) and (78), we have

s = q2 x (1 − y) , t = q2x y , u = q2 (1 − x) . (14.80)

With (79) and (80) plugged into (70) and using (49), we finally get

H(q2) =
[q2]n−4πn−3

2

2n−5

Γ(n
2
)Γ(n

2
− 1)

Γ(n+1
2

)Γ(3n
2
− 3)

{
2n(n− 2)

(n − 4)2
+
n2 − 4

(n− 4)
+ (n − 4)

}
.

The ε = 4− n double and simple poles in the above equation come from the
integration of 2sq2/ut and (n− 2)u/t of (70) respectively.

Putting the quantity H(q2) back into (69) and (67) and using again (59)
and (60), we obtain the bremsstrahlung rate

ΓRe

Γ0
=

[
Nc|Vq2q3

|2 αs

]
25ε π

3
2ε Γ(2 − 1

2ε)

M3εΓ[ 12(3 − ε)] Γ[ 12 (5 − ε)]

∫ 1

0

dξ ξ−ε (1 − ξ)2−ε[1 + (2 − ε) ξ]

× Γ(1 − 1
2ε)

Γ(3 − 3
2ε)

[
8

ε2
− 12

ε
+ 5

]
. (14.81)
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The first factor on the first line of (81) is exactly the same as the first factor
of (61) for the virtual gluon correction rate, so we only need to expand the
regular terms in the second line of (81) up to ε2. Using (63), we find

Γ(1 − 1
2
ε)

Γ(3 − 3
2
ε)

[
8

ε2
− 12

ε
+ 5

]
=

4

ε2
− 4γE − 3

ε
+ 2γ2

E − 3γE +
19

4
− 2π2

3
. (14.82)

14.6 Final Result

As explicitly shown, the ε poles of (82) exactly cancel those of (62), i.e. the
sum of the right-hand sides of (62) and (82) is finite and equal to −4 + 19

4 .
The sum of virtual and real gluon corrections to the rate is now free of IR
divergences, so we put ε = 0 in the first line of ΓVi and ΓRe in (61) and (81).

Let us summarize. The ultraviolet divergences of loop diagrams in
Fig. 14.2 are removed by replacing F1(q

2) with the renormalized form factor
F ren

1 (q2) = F1(q
2) − F1(0). Both F1(q

2) and F1(0) are UV divergent, but
their difference is free of UV divergences. The next step deals with the in-
frared divergences in both ΓVi and ΓRe. They are found to cancel exactly
each other to yield a finite result free of both UV and IR divergences. The
final result for the radiative corrections is the sum of (61) and (81)

Γrad. = ΓVi + ΓRe = Γ0
Nc |Vq2q3

|2 αs

Γ(3
2
)Γ(5

2
)

∫ 1

0

dξ (1 − ξ)2 [1 + 2 ξ]

[
−4 +

19

4

]

= NcΓ0 |Vq2q3
|2 αs

π
= Nc

G2
F M

5

192π3
|Vq2q3

|2 αs

π
. (14.83)

In the limit of massless quarks when the tree diagram rate Γ0Nc |Vq2q3
|2 as

given by (13.60) is added to the one-loop QCD corrections (83), then together
with |Vud|2+|Vus|2 ≈ 1, the inclusive semileptonic decay width of the τ lepton
is given by

Γ(τ → ντ + hadrons ) = Nc
G2

FM
5

192π3

[
1 +

αs

π

]
. (14.84)

As already mentioned at the beginning, this QCD correction is identical to
the correction of the ratio R defined in (13.65) for e+ + e− annihilation into
hadrons. One has the same five diagrams, except that the photon replaces
the W weak boson and the vertex γµ replaces γµ(1 − γ5). Thus

R =
σ(e+ + e− → hadrons)

σ(e+ + e− → µ+ + µ−)
= Nc

∑

j

Q2
j

[
1 +

αs

π

]
. (14.85)

We notice that the factor π2 in (62) and (82) comes from the second derivative
of the Γ(x) function [see (63)]. In the sum ΓVi + ΓRe, it happens that the
π2 terms cancel out. However, there are circumstances in which the π2 term
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remains. Examples of such cases are the one-loop QED correction to muon
or tau lepton decays, as given by (13.27), and the one-loop QCD correction
to quark decays Q → q1 + q2 + q3 illustrated by (16.6).

This chapter ends with a remark. When the fermionic masses m2 6=
m3 6= 0 are taken into account, calculations of radiative corrections are ex-
ceedingly complicated. We simply report the result obtained by replacing in
(83) Γ0 by Γ0G(x2, x3), and (αs/π) by (αs/π)K(x2, x3) where xk = m2

k/M
2.

Of course G(0, 0) = K(0, 0) = 1. The results in (83) and (84) become

Γrad. = Nc |Vq2q3
|2
{
G2

FM
5

192π3
G

(
m2

2

M2
,
m2

3

M2

)}[
αs

π
K

(
m2

2

M2
,
m2

3

M2

)]
, (14.86)

Γ(τ → ντ + hadrons ) = Nc
G2

FM
5

192π3
G

(
m2

2

M2
,
m2

3

M2

)[
1 +

αs

π
K

(
m2

2

M2
,
m2

3

M2

)]
.

The analytic expression of G(x, y) – corresponding to the tree diagram of
Fig. 14.1, uncorrected by QCD – is already given by (13.62). Some numerical
values of K(x, x) and K(x, 0) = K(0, x) together with G(x, x) and G(x, 0) =
G(0, x) are given in Table 14.1. The decrease of G(x, y) is expected from
kinematic phase space effect. What is surprising in the radiative corrections
is the spectacular increase of K(x, y) with growing x and y. The mass effect
in K(x, y) finds its full application in heavy flavor physics. Its relevance to
the decay b → c + s + c is an example and will be discussed in Chap. 16.

Table 14.1. G(x, 0), G(x, x) and K(x,0), K(x,x)

√
x 0 0.1 0.2 0.3 0.4

G(x,0) 1 0.93 0.74 0.52 0.32

G(x,x) 1 0.85 0.52 0.20 0.026

K(x,0) 1 1.62 2.8 4.47 7

K(x,x) 1 2.26 4.63 8.15 16.27

Problems

14.1 Noninterference between tree and bremsstrahlung diagrams.

To order O(g2
s ), one can draw two diagrams similar to Fig. 14.3 with two

gluons (instead of one) emitted. We call them Fig. 14.3bis. While there is
an interference between the diagram of Fig. 14.1 and the loop diagrams of
Fig. 14.2 to obtain the O(g2

s ) corrections to the rate, there is no interference
between Fig. 14.1 and Fig. 14.3bis for the same order g2

s corrections to the
rate. Explain why.
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14.2 Analytic expressions of F1,uv(q
2) and F1,ir(q

2). For F1,uv compute
the integral in the second line of (17). For F1,ir in (19), the IR divergence is

symbolically written as
∫ 1

0
du/u. There are two different ways of parameter-

izing this IR: either (i) by assigning a fictitious small mass ζ to the gluon,
i.e. by replacing its propagator 1/k2 in (4) with 1/(k2 − ζ2); or (ii) by us-
ing dimensional regularization as in Sect. 14.4 so that the IR divergence is
also represented by a pole 1/ε as the UV divergence. Derive an analytic
expression of F1,ir(q

2) in both cases (i) and (ii).

14.3 F1(0) + δq = 0 from Ward identity. We have seen the trivial
role of γ5 in our QCD corrections to the rate, so let us forget it in the
expression of Γµ(p2, p3) as given by (4). We are considering only the vector
current, i.e. QED where photons replace gluons. Multiply qµ = (p2 +p3)µ by
Γµ(p2, p3) (without γ5), and using the expression of Σ(p) in (21), show that

(p2 + p3)µΓµ(p2, p3) = Σ(−p3) − Σ(p2) . (14.87)

This QED equation, known as the generalized Ward identity, was derived by
Takahashi. The original one, pioneered by Ward, can be obtained by letting
p2 tend to −p3. In this limit, we have

Γµ(p, p) = − ∂

∂pµ
Σ(p) . (14.88)

Notice that in (4), if m2 6= m3, the vector current is not conserved, show that
(87) cannot hold. From (12), the left-hand side of (88) is Γµ(p, p) = γµF1(0).
Its right-hand side is − γµδq, since Σ(p) = Σ(m) + δq(6p−m) from (27) and
(31). Then F1(0) + δq = 0. In QED, the counterterm Zq is usually denoted
by Z2 = 1 + δ2, so the Ward identity (88) is written as F1(0) = 1 − Z2.
On the other hand, the QED counterterm of the vertex denoted by Z1, which
is used to cancel the UV divergence of the form factor F1(q

2), is given by
F1(0) = (1/Z1) − 1 = 1 − Z1 + O(e4), i.e. F1(0) = 1 − Z1 (see 15.26). Then
together with (88), one has Z1 = Z2.
In brief, the vertex function counterterm Z1 = 1 − F1(0) in QED is equal to
the fermion field counterterm Z2 = 1 + dΣ(p)/d 6p| 6p=m . As we will see in
the next chapter, the relation Z1 = Z2 does not hold in QCD.

14.4 F em
2 (0) from Higgs boson contribution. If we replace in Fig. 14.4b,

the vertex γµ(1−γ5) by γµ, and the internal gluon by an internal photon, then
we have one-loop QED corrections. We are interested in the finite form factor
F em

2 (0) as given by e2/(8π2) = αem/2π [see (14)]. The magnetic moment of
the electron is usually written as 1

2
gµe, i.e. g = 2 corresponds to its pointlike

value of µe = −e/2me. Its anomalous magnetic moment, i.e. the deviation
from its pointlike value, is 1

2(g − 2) = αem/2π.
Consider the field φ(x) of the Higgs boson H which has an interaction with a
charged lepton field ψ(x) of mass m`: f`φ(x)ψ(x)ψ(x). In fact, the coupling
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constant is f` = m`/v where v = (
√

2GF)−1/2. Similar to Fig. 14.4b, instead
of QED corrections, the internal photon field is now replaced by H. Compute
the anomalous magnetic moment of the electron F2(0) due to this virtual
H. Experimentally, the deviation 1

2(g − 2) is known to be 0.0011597 for the
electron. What limits on MH can we deduce from this number?

14.5 Fermion mass generated by the gap equation. The Pauli–
Villars regularization procedure introduces a large cutoff Λ, i.e. the gluon
propagator 1/(k2 − ζ2) is replaced by

1

k2 − ζ2
−→ 1

k2 − ζ2
− 1

k2 − Λ2
, (14.89)

where ζ is a small gluon mass introduced to regulate the infrared divergence.
Compute Σ(p) and B(m2) in terms of Λ. In (25), if the bare mass m0 is
assumed to be zero, then the renormalized mass m in (25) obeys the gap
equation B(m2) = 1. Find m in terms of Λ. This mechanism of mass gener-
ation is known as the Nambu–Jona-Lasinio model.

14.6 Mass effect in two-body and three-body phase space. Using
(56) in n dimension, first compute Jµν(q2) as defined by (54) where m2 and
m3 are not neglected. Compute the three-body phase space
∫

d3p1

2E1

d3p2

2E2

d3p3

2E3
δ4(p1 + p2 + p3 − q) (14.90)

as an integral over Ej, E` where all the masses are 6= 0. Give an equivalent
of (75) with the three nonzero masses. Show that the Ej , E` domain of the
Dalitz plot is no longer an isosceles triangle, but resembles an ellipse.
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