
13 Muon and Tau Lepton Decays

In this chapter we study the tau lepton τ± and the muon µ± decays via weak
interactions. As the leptonic numbers are assumed to be strictly conserved
in the standard model, the electromagnetic decay modes τ± → µ±(e±) + γ
and µ± → e± + γ cannot occur. See however Problem 12.1.

The importance of the subject is two-fold. On the one hand, the leptonic
decay of τ (or µ) is the simplest and cleanest process which unambiguously
determines the left-handed V − A structure of the weak charged currents.
This left-handed structure is universal in the sense that it describes weak
reactions of all particles, whether they are leptons, mesons, or baryons. The
violation of discrete symmetries P, C, and CP is well illustrated in the τ
leptonic modes. On the other hand, τ is the only lepton massive enough to
disintegrate into hadrons. Its semileptonic modes in both exclusive and inclu-
sive channels are ideal for studying the strong interaction in the best possible
conditions. The τ semileptonic decays offer an extremely favorable testing
ground for both perturbative QCD radiative corrections and non perturba-
tive QCD topics, such as decay constants, form factors, and the conserved
vector current (CVC).

To have a global viewpoint and to put the subject in context, we first
recall the general framework of weak decays before going into the specific τ
and µ cases.

13.1 Weak Decays: Classification and Generalities

As the lightest particles in their categories, the proton and the electron are
the only stable charged fermions in nature, a consequence of the conservation
of the baryon and lepton numbers (at least to a very high degree of accu-
racy). On the other hand, when a hadron or charged lepton is produced,
it decays more or less quickly into other particles. Hadrons can be grouped
into two categories: resonances and low-lying metastable particles. A glance
at the some two hundred and fifty existing hadrons in the Review of Par-
ticle Physics1 shows that most of the hadrons are resonances. Examples of
resonances are mesons ρ(770), K∗(892), the charmonia, the bottomonia, as
well as the baryons ∆(1620), ΣC(2455), etc. Resonances decay quickly by

1 Phys. Rev. D54 (1996) 1
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strong interactions, for instance ρ→ 2 π, K∗ → K + π, ∆→ N + π+ π; their
lifetimes are very short ∼ 10−23 s. Other neutral particles like the π0, η,
Σ0 have smaller total widths (or longer lifetimes ∼ 10−19 s) because they
only decay by electromagnetic interactions which violate isospin or G-parity
(Chap. 6): π0 → γ + γ, Σ0 → Λ + γ, η → 3 π (the G-parity of η is +1,
whereas an odd number of pions have G-parity −1).

Generally, strong decays conserve quantum numbers such as isospin, fla-
vors, and discrete C, P, T symmetries. Electromagnetic decays only violate
isospin, whereas in weak interactions, isospin, flavors and, discrete symme-
tries are violated.

The weak interaction governs the decay of low-lying metastable hadrons:
π±, charged and neutral flavored mesons K, D, Ds, B, B0

s as well as baryons
n, Λ, Σ±, Ξ, Ω−, Λ+

c , Λ0
b. Their widths are much smaller than those of the

resonances, their lifetimes range from 103 s for the free neutron to 10−13 s
for charmed or bottom mesons. Weak decays of leptons, mesons, and baryons
appear at first glance to have little in common. Lepton decays involve either
only leptons, for example µ− → νµ + e− + νe, or a neutrino and hadrons,
e.g. τ− → ντ + π− + π0 (semileptonic modes). Mesons can decay into only
lepton pairs, for instance K+ → µ+ + νµ, or into hadrons and a pair of
leptons (semileptonic) such as D0 → ρ− + e+ + νe, or into pure hadrons,
e.g. B→J/ψ+ K∗. Baryons can have both semileptonic and purely hadronic
channels. Isospin, parity, and charge conjugation are violated in weak decays.
In most cases, hadronic flavors (strangeness, charm, bottomness) change. Be-
cause of the conservation rules mentioned above, strong and electromagnetic
interactions are forbidden in the decays of low-lying metastable hadrons, oth-
erwise weak interactions are swamped by them.

To lowest order of GF, the neutral gauge boson Z does not participate
in flavor-changing weak decays because of the GIM mechanism. Flavor-
conserving weak decays by neutral currents are many orders of magnitude
smaller than electromagnetic decays (Chap. 12). Therefore the Z-mediated
weak decays will not be considered, only charged current processes are stud-
ied. It is remarkable that weak decays of particles, in spite of the huge differ-
ences in the various channels, partial rates, and lifetimes, all share a common
feature. They can be quantitatively described by an effective Lagrangian

which is the product of two left-handed V − A charged currents mediated by
the gauge bosons W, as mentioned in (9.1)–(9.5):

Leff = i lim
q2�M2

W

( −ig

2
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2
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, (13.1)

where Lλ and Hλ are the leptonic and hadronic currents, with the Fermi
coupling constant GF defined by GF/

√
2 = g2/8M2

W. Weak decays of all
particles, in particular the modes in Table 6.6, are described by (1):
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• leptonic decays of leptons by LλL†
λ ,

• leptonic modes of mesons and semileptonic decays by LλH†
λ +HλL†

λ,

• nonleptonic or hadronic decays of hadrons by HλH†
λ .

These V − A charged currents are expressed in terms of lepton and quark
fields, they may be written as

Lλ =
∑

`=e,µ,τ

ν`(x)γλ(1− γ5)`(x) ,

Hλ =
∑

Q ,q

VQ qH
Qq
λ , where HQq

λ = Q(x)γλ(1− γ5)q(x) , (13.2)

where Q = u , c and q = d , s , b fields. In (2), VQq is a CKM matrix element,
Q stands for the up and charmed quark fields, while q represents the down,
strange, and bottom quark fields. The reason for the absence of the top
quark is that top is heavier than the gauge boson W and can decay directly
into t→W +b with the coupling g ∼MW

√
GF without passing through the

virtual W propagator as in (1).
The universal weak effective Lagrangian (1) has a long history, starting

with the neutron and muon decays together with the crucial discovery of
parity violation in 1956. This Lagrangian is now the core of the standard
electroweak theory. The τ decay offers a powerful test of (1) in both leptonic
and semileptonic channels. Moreover in semileptonic modes, the interplay
between QCD and weak interactions can be fully exploited.

The Feynman diagrams for the µ and τ decays are drawn in Fig. 13.1.
At the quark level, only the doublet (u, d′′) enters, where d′′ = Vud d+Vus s.
Since the τ is lighter than the charm, the other doublet (c, s′′) where s′′ =
Vcs s + Vcd d does not intervene. The τ decay products are light mesons
formed by u, d, and s quarks, such as the unflavored π, ρ, and a1(1260)
associated with |Vud|2 ≈ (0.97)2 for the Cabibbo-favored modes, and the
strange K, K∗(892) with |Vus|2 ≈ (0.22)2 for the Cabibbo-suppressed modes.
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Fig. 13.1. (a) The only possible decay mode of the light µ− ; (b) leptonic and
semileptonic decays of the heavy τ−

Let us close the section with one remark. In any reaction, the branching
ratio of a parent particle P decaying into any particular channel F is the first
quantity to be measured:

BF ≡
Γ(P → F )

Γtotal(P )
= τP × Γ(P → F ) , (τP is the lifetime of P ) .
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Important weak decay dynamics can be revealed by the branching ratios of
processes into different final states.

13.2 Leptonic Modes

Let us start with the important leptonic decay mode of τ :

τ−(P )→ ντ(k1) + `−(p) + ν`(k2) , (13.3)

where `− stands for the electron or the muon; the four-momentum of these
particles are specified in parentheses. The τ− and the `− masses are denoted
by M and m respectively. The neutrinos are assumed massless. This mode is
decisive for the discovery of τ . Produced in e+ +e− → τ+ + τ−, the τ+ and
τ− leptons subsequently decay with a distinctive signature rarely found in
other particle decays. Indeed, from τ− → ντ +e−+νe and τ+ → ντ +µ++νµ,
one observes in the decay product a pair e−µ+ + invisible neutrinos whose
presence is revealed by the apparent missing energy. It was through this
special signature e∓µ± that the τ± leptons were discovered.

13.2.1 Leptonic Branching Ratio

We first note that a very naive estimate of the leptonic branching ratio
Br(τ− → ντ + e− + νe) ≡ Be can be made by a simple counting rule. In-
deed the τ has two pure leptonic modes leading to emission of electrons
and muons. It also has the semileptonic modes, its inclusive decay defined
as τ → ντ + any hadron is symbolically written as τ → ντ + X, where
X stands for the sum of all kinematically allowed mesons. This inclusive
semileptonic process may be described by τ decays into its own neutrino ντ

and a quark+antiquark pair. In the parton model spirit, this approach is jus-
tified by a large energy released by the τ . From the closure argument, these
quark pairs saturate the sum of all the hadronic modes, since once quarks
are produced by a weak decay, they can only form hadrons. The inclusive
semileptonic rate is given by

Γ(τ− → ντ +X) = Γ(τ− → ντ + dj + uj) + Γ(τ− → ντ + sj + uj) ,

where j is the color index. The first (second) term on the right-hand side of
the above equation is the decay rate into kinematically allowed nonstrange
(strange) mesons. They are respectively associated with |Vud|2 ≈ (0.97)2 and
|Vus|2 ≈ (0.22)2. As we will see later in (22) and (62), the rate depends on
the fermionic masses in the final state. However, in the first approximation
we may neglect their masses, so that for each color j of quarks, we have

Γ(τ− → ντ + e− + νe) ≈ Γ(τ− → ντ + qj + uj) , where q = d, s .(13.4)

Since quarks have Nc = 3 colors and |Vud|2 + |Vus|2 ≈ 1, the inclusive semi-
leptonic width Γ(τ− → ντ + X) is three times Γ(τ− → ντ + e− + νe), and
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the total width is five times the latter (do not forget the muon), so the
leptonic branching ratio Be is 1

5 by this counting rule to be compared with
the experimental data of (17.83 ± 0.06)%. The difference can be explained
by the mass and QCD correction effects at the quark level which amount
to about 10%. This simple counting rule supports the quark–parton picture
which in turn indicates that the energy released by the τ is large enough to
make legitimate the use of the parton model. This color-counting argument
holds also in high energy e+ + e− annihilation into hadrons. The similarity
of Γ(τ− → ντ + hadrons) and σ(e+ + e− → hadrons) may be seen in the
following relation (where W∗ and γ∗ are the virtual W boson and photon):

τ− → ντ +X = τ− → ντ + W∗ , followed by W∗ → qj uj ⇒ hadrons ,

e+ + e− → γ∗ , followed by γ∗ → Qj Qj ⇒ hadrons . (13.5)

13.2.2 Parity Violation. Energy Spectrum

We go further by computing the `− angular distribution and its asymmetry
with respect to the τ polarization axis, the `− energy spectrum, and finally
the integrated leptonic width Γ(τ− → ντ + `− + ν`). All of these physical
quantities are of great importance in the determination of the τ properties, in
particular its weak coupling strength and the structure of its charged current.
Their measurements can give a definite answer to the question: is the τ lepton
a replica of the electron and the muon, or is there any deviation from the
standard model? To allow for possible deviations from the pure left-handed
V − A current of the τ–ντ system, let us write the (current × current) decay
amplitude of (3) in a more general form:

M =
GF√

2
{u(k1)γλ(a− bγ5)u(P )}

{
u(p)γλ(1− γ5)v(k2)

}
. (13.6)

A V −A current of the τ–ντ system corresponds to a = b, and in the standard
electroweak model a = b = 1 (universality of the three lepton families).
This property is well established for the e–νe and µ–νµ systems, as explicitly
shown by the second factor

{
u(p)γλ(1 − γ5)v(k2)

}
in (6). A V + A structure

of the τ–ντ current corresponds to a = −b. Arbitrary a and b correspond
to a mixture of left-handed and right-handed currents. We first evaluate
|M|2 = 1

2 G
2
F (T1)λρ(T2)

λρ, where

(T1)λρ = Tr
[
u(k1)u(k1)γλ(a− bγ5)u(P )u(P )γρ(a− bγ5)

]
,

(T2)
λρ = Tr

[
u(p)u(p)γλ(1− γ5)v(k2)v(k2)γ

ρ(1− γ5)
]
. (13.7)

In order to study the angular distribution of `− with respect to the τ spin,
we sum only the spins of the final state but still keep untouched Sµ

τ , the
spin polarization of the initial state τ . In the τ rest frame P µ = (M, 0), its
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spin vector Sµ
τ takes the form Sµ

τ = (0, Ŝ) , with |Ŝ| = 1. Recalling that
u(P )u(P ) = 1

2(6P +M)[1 + γ5 6Sτ ], we find

(T1)λρ =
(a+ b

2

)2

Tr
[
6k1γλ(6P −M 6Sτ )γρ(1− γ5)

]

+
(a− b

2

)2

Tr
[
6k1γλ(6P +M 6Sτ )γρ(1 + γ5)

]
,

(T2)
λρ = 2 Tr

[
6pγλ 6k2γ

ρ(1− γ5)
]
. (13.8)

The relation (12.39) is useful to distinguish the effect of (V ∓A) × (V ∓A)
product of currents from the (V ±A) × (V ∓A) one. We get

∑

spins

|M|2 = 64 G2
F

{(a+ b

2

)2[
p · k1

] [
(P −MSτ ) · k2

]

+
(a− b

2

)2[
k1 · k2

] [
(P +MSτ ) · p

]}
. (13.9)

The general formula for the computation of decay widths is given by (4.70).
In our case, with three particles in the final state, we have

dΓ =
1

2M

d3p

2E

∫ ∫
d3k1

2E1

d3k2

2E2

δ4(k1 + k2 − q)
(2π)5

∑

spins

|M|2, q = P − p

=
64 G2

F

2M

d3p

2E

{(a+ b

2

)2

pµ (P −MSτ )ν +
(a− b

2

)2

(P +MSτ ) · p gµν

}

× 1

(2π)5

∫ ∫
d3k1

2E1

d3k2

2E2
δ4(k1 + k2 − q) kµ

1 k
ν
2 , (13.10)

there is no factor 1
2

in
∑

spins |M|2 on the right-hand side of (10) because the τ
spins are not averaged. Since the neutrinos are unobserved, we first integrate
over their three-momenta k1 and k2. On the other hand, to study the energy
and angular distributions of `−, we keep its momentum p untouched at the
beginning. The last term on the right-hand side of (10) can be computed
using formulas in the Appendix. With massless neutrinos, the integration is
simple (Problem 5.2) and we get

Iµν ≡
∫

d3k1

2E1

d3k2

2E2
δ4(k1 + k2 − q) kµ

1 k
ν
2 =

π

24

(
q2gµν + 2qµqν

)
. (13.11)

The product of Iµν with the quantity in the curly brackets of (10) is

π

24

{(a+ b

2

)2[
q2[(P −MSτ ) · p] + 2 p · q [(P −MSτ ) · q]

]

+
(a− b

2

)2

6 q2 [(P +MSτ ) · p]
}
. (13.12)
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To distinguish the effects of the V −A current from those of a possible V + A
current, it is convenient to arrange (12) into two parts. The first part is a
sum of left and right chiral current contributions with equal weights, and the
second part belongs to their unequal mixture. This separation enables us
to introduce later the Michel parameters ρ , ξ, and δ, which are important
measurable quantities to test whether or not the heavy lepton τ is a replica
of the muon and the electron. This decomposition turns out to be a powerful
method of investigating the decay dynamics, as we will see. With the coeffi-
cient π/24 implicitly understood, let us rewrite (12) in a form in which the
mentioned separation is explicit [note that Sτ · q ≡ Sτ · (P − p) = −Sτ · p].
The quantity inside the curly brackets of (12) is

6 q2 P · p
[(a+ b

2

)2

+
(a− b

2

)2]
+
[
2 p · q P · q − 5 q2 P · p

](a+ b

2

)2

+MSτ · p
{

2 q2
[(a+ b

2

)2

+
(a− b

2

)2]
+ (2 p · q − 3 q2)

(a + b

2

)2

+ 4 q2
(a− b

2

)2}
. (13.13)

In (13), this separation applies to both the spin-dependent MSτ · p and the
spin-independent q2 P · p terms. In the τ rest frame, θ denotes the angle
between the three-momentum p of the `− and the spin Ŝ of the τ− , thus

pµ = (E,p) , Sτ · p = −|p| cos θ , d3p = 2π d(cos θ) |p|E dE ,

q2 = M2 − 2ME +m2 . Since q2 ≥ 0⇒ m ≤ E ≤ M2 +m2

2M
≡ Emax ,

P · p = ME , P · q = M(M − E) , p · q = ME −m2 . (13.14)

Putting (10), (13), and (14) together, we obtain

dΓ

d cos θ dE
=
G2

F |p|E
3(2π)3

a2 + b2

2

{
X
}
, where (13.15)

{
X
}

=

{
6 q2 +

(a+ b)2

2(a2 + b2)

[
8ME − 3M2 −m2[3 + (2M/E)]

]

− |p|
E

cos θ

[
2 q2

(
1 +

(a− b)2
a2 + b2

)
+

(a+ b)2

2(a2 + b2)
(8ME − 3M2 − 5m2)

]}
.

In the above expression of
{
X
}
, the cos θ-independent term (isotropic part)

gives the energy spectrum of the emitted `−. The cos θ term (anisotropic
part) on the last line represents the angular correlation between the spin
S of the decaying particle and the three-momentum p of the outgoing `−.
This correlation is a crucial quantity to reveal the parity violation of weak
interaction. A short recall of the discussions given in Chap. 5 might be useful.
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Parity Violation. The parity violation phenomenon can only appear as
a pseudoscalar term constructed from experimentally measurable quantities,
for which the anisotropic part of (15) is the simplest example. This apparently
trivial fact had never been noticed before 1956, when Lee and Yang pointed
out that if one did not look for a pseudoscalar measurable quantity, the non-
conservation of parity could never be experimentally discovered, even if the
interaction violates space inversion (or parity) symmetry P.

In the current × current amplitude, the interference V × A is a pseu-
doscalar quantity. The electron energy spectrum and the integrated rate are
two examples of scalar quantities coming from the V × V and A× A products
of two curents. Their measurements cannot tell whether the P symmetry is
broken by weak interactions or not.

............................................................................................................................................................................................
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Fig. 13.2. J · p correlation in Co60
→ Ni60 + e− + νe

As explained in Chap. 5, under space inversion P, x → −x, S → +S

while p → −p, the non conservation of parity manifests itself by a nonzero
value of the coefficient of the pseudoscalar term S ·p = |p| cos θ which occurs
in the matrix element of the operator product V ×A. A forward–backward
asymmetry in the emission of l with respect to the spin S constitutes an
unequivocal proof of parity violation. Very similar to the S · p correlation
considered here is the electron asymmetry with respect to the polarization
axis of the cobalt nucleus in Co60 → Ni60+e−+νe observed by C. S. Wu, who
gave the first experimental demonstration of parity violation. A sample of
Co60 was kept at a very low temperature, its spin J (J = 5) is aligned and the
final Ni60 has spin j = 4. The electron angular distribution is described by
the function F(θ) = 1+α J · p/|J|E, where p and E are the momentum and
energy of the electron. If the coefficient α is found to be definitely nonzero,
a parity violation is proven. This was indeed the case, and the electron
was found to be emitted preferentially antiparallel to J, i.e. α = −1. The
difference by one unit of spin between the initial and final nuclei on the one
hand, and the conservation of the z component of the angular momentum
along J on the other hand, imply that the electron spin σ must point in
the direction J. It shows that the electron emitted in nuclear β-decay is
antiparallel to its spin σ, i.e. the electron is left-handed. As illustrated in
Fig. 13.2, this is the first experimental indication of the V−A character
of the charged current. On the other hand, scalar quantities, such as the
isotropic energy spectrum in (15), have no bearing on the question of parity
violation and cannot be used to test it.
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Energy Spectrum. Integrating (15) over θ, we obtain the energy spectrum
of `−. The anisotropic term, which is linear in cos θ, vanishes, while the
isotropic term is doubled. We have

dΓ

dE
=
a2 + b2

2

G2
F |p|E

3(2π)3

{
12 (M2 − 2ME +m2)

+
8

3
ρ
[
8ME − 3M2 −m2[3 + (2M/E)]

]}
, (13.16)

where we define the Michel parameter ρ by

ρ =
3

8

(a+ b)2

a2 + b2
. (13.17)

For historic reasons (see below), conventionally, we write ρ with the coeffi-
cients 8/3 in (16) or 3/8 in (17), since ρ turns out to be 3/4 in the four-
fermion interaction of the type (V −A) × (V − A) product of currents. We
now see that the `− energy spectrum dΓ/dE in τ decay (Fig. 13.3) is very
useful because it distinguishes the V ± A property of the τ -ντ weak current.
Although the shape dΓ/dE for V −A is distinct from the V + A one, their
integrated rates Γ =

∫
dΓ
dE dE are identical. Hence measurement of Γ alone

cannot distinguish the chirality of weak currents.
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Fig. 13.3. The electron energy spectrum dΓ/dE in τ−

→ ντ + e− + νe .

In the 1950s, the theory of weak interaction was still in an embryonic
state, and it was not known whether the four-fermion β-decay of nuclei or
muon was of the current × current form, e.g. V × V or [ψ1γµψ2] [ψ3γ

µψ4], as
postulated by Fermi in analogy with the electromagnetic interaction. At that
time, without data on the parity violation, the weak interaction could be a

priori any combination of the scalars obtained from the covariant products
S × S, V × V, T ×T, A× A, P × P (Chap. 5). Michel’s idea is to introduce
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in the electron energy spectrum a parameter ρ to separate terms which are
common to the structures S, V, T, A, P from other terms which are sensitive

to some of these structures. For example, a pure product S × S would give
ρ = 0, while a pure T× T would give ρ = 1.

Following Michel, we are led to rearrange (16) into two terms separated
by a parameter ρ. The first term 12 (M2−2ME+m2) , which is independent
of a and b , cannot distinguish the V − A from the V + A structure of the
τ -ντ current. The second term [last line of (16)], which depends on a and
b , is sensitive to V ∓ A and can be used to determine this V∓ A structure.
We emphasize that in the decay τ− → ντ + `− + ν`, once the current of the
final state `–ν` is known to have the V −A structure, then the V ±A current
of the initial state τ–ντ can be determined by measuring the parameter ρ.
We extract ρ by fitting the electron energy distribution (16) with data and
obtain important information on the dynamics.

From (17), ρ is always ≤ 3
4 . The V − A (a = b) of the τ–ντ current in

(6) corresponds to ρ = 3
4 , a pure V (b = 0) or a pure A (a = 0) would result

in ρ = 3
8 , while a V + A type (a = −b) would imply ρ = 0. Recent data2 give

ρτ = 0.742± 0.027, in excellent agreement with the V − A charged current
involved in τ decays. For the muon, the ρµ parameter measured in muon
decay µ− → νµ + e− + νe is 0.7518± 0.0026.

13.2.3 Angular Distribution. Decay Rate

The confirmation of a = b is again found in the p ·S correlation. We rewrite
the anisotropic part of (15) in terms of two additional Michel parameters
usually denoted as ξ and δ:

{
X
}

= 6 (M2 − 2ME +m2) +
4

3
ρ

[
8ME − 3M2 −m2

(
3 +

2M

E

)]

− ξ |p|
E

cos θ
[
2 (M2 − 2ME +m2) +

4

3
δ (8ME − 3M2 − 5m2)

]
, (13.18)

ξ = 1 +
(a− b)2
a2 + b2

, δ =
3

8

(a+ b)2

a2 + b2 + (a − b)2 . (13.19)

For fixed E, the parameters ξ and δ can be obtained by fitting the θ distri-
bution with experiments. Data2 give ξ = 1.03± 0.12, and ξ δ = 0.76 ± 0.11;
they are in excellent agreement with a = b. For a V + A current, we would
get ξ = 3, δ = 0, in sharp contrast with ξ = 1, δ = 3

4 for a V −A.
Equivalently, for fixed E, the angular distribution of the `− with respect

to the spin direction of the τ− in (15) can be written as D(θ). With an
overall normalization factor not explicitly shown and neglecting m2 in (15),
D(θ) can be written as

D(θ) = 1− α cos θ , where α =
4E −M
3M − 4E

for V −A

α = +1 for V + A . (13.20)

2 Phys. Rev. D54 (1996) 1
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The forward–backward asymmetry is also an important physical measurable
quantity that can fix the relative sign between a and b ; its measurement is
therefore useful. For a V − A current, the asymmetry parameter α increases
from −1

3 at E = 0 to +1 when E reaches Emax = M/2, whereas α is constant
in the V + A case.

From now on, we put a = b but still let the overall normalization factor
a be arbitrary. We now see that data fix a to 1, i.e. the universality of
e, µ, τ is experimentally confirmed.

Putting ρ = 3
4 and a = b, we now integrate (16) to obtain the full

leptonic rate; the integration range for E is given in (14):

Γ =
2 a2G2

F

3 (2π)3

∫ Emax

m

√
E2 −m2

[
ME (3M − 4E)−m2 (2M − 3E)

]
dE .

The result of the above integration is

Γ(τ− → ντ + `− + ν`) = a2f(m2/M2) Γ0 , Γ0 ≡
G2

FM
5

192 π3
, (13.21)

f(x) = 1− 8 x+8 x3−x4− 12 x2 log x ; f(m2
µ/M

2) = 0.9728 .(13.22)

The formula Γ0 ≡ G2
FM

5/192 π3 – which gives the decay rate of a fermion
of mass M into three massless fermions (Problem 5.2) – will be repeatedly
used. The phase space correction f(m2/M2) takes into account one massive
fermion among the three in the final state, the other two are massless. The
numerical value of Γ(τ− → ντ + e− + νe) can be obtained using data of both
the τ lifetime and the electronic branching ratio

Γ(τ− → ντ + e− + νe) =
Be

ττ
=

0.1783± 0.0006

2.91± 0.015
× 1013 s−1 . (13.23)

To determine the coefficient a , we compare (23) with the theoretical rate
(21), in which the phase space correction due to the electron mass me is
completely negligible, i.e. f(m2

e/M
2) is taken as 1. However the radiative

correction 0.996 given below in (28) is included, so that

G2
FM

5

192 π3
× 0.996 = 4.033× 10−13 GeV = 0.06127× 1013 s−1 ⇒ a = 1± 0.006 .

Having shown that a = b = 1, we rewrite the previous formula:

dΓ(τ∓ → `∓ + ν + ν)

d cos θ dE
=
G2

F |p|
24 π3

{
ME (3M − 4E) −m2 (2M − 3E)

∓ |p| cos θ [M (4E −M)− 3m2]
}
. (13.24)
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The angular distribution for τ+ can be obtained from the angular distribution
of the τ− by u(P )↔ v(P ), implying MSτ ↔ −MSτ in (9), from which (24)
follows.
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Fig. 13.4. (a) At E = Emax, the angular distribution of the e− with respect to
the τ− polarization; (b) the charge-conjugation states of (a); (c) CP operated on
(a) gives the angular distribution of the e+ with respect to the τ+ polarization

The V −A character of the τ–ντ and e–νe currents is shown in Fig. 13.4a.
In the τ rest frame, when the electron energy is maximum (E ≈ Emax), kine-
matics implies that the two neutrinos ντ and νe are emitted in one direction
(for instance the +x axis), whereas the electron is emitted in the opposite
direction (−x axis). Since the two neutrinos have opposite helicities, the
total angular momentum conservation in the x axis forces the spin of e− to
be parallel to the spin of τ−. Since the electron has negative helicity at high
momentum, it must be emitted antiparallel to the τ− spin.

This correlation between spin and three-momentum is also described
by the asymmetry parameter α in (20). When E = Emax = M/2, α =
+1, and the electron is likely emitted antiparallel to the τ− spin direction,
whereas the positron prefers to be emitted parallel to the τ+ spin. This Emax

configuration is illustrated in Fig. 13.4.
Near the lower end E = 0, exactly the opposite configuration appears,

since α = −1
3 .

Moreover, Fig. 13.4 shows why the spin and momentum correlation in
the τ+ decay can be derived from that of the τ−, assuming CP invariance of
the weak interaction involving leptons. Starting with the τ− → ντ + e− + νe

decay in Fig. 13.4a, let us consider its charge conjugate states in Fig. 13.4b.
The configuration of the latter cannot be observed because all of the e+,
νe and ντ have the wrong helicities. The charge conjugation symmetry C
is manifestly violated by weak interactions. We then go further by letting
the space reversal P operate on Fig. 13.4b, which becomes Fig. 13.4c. The
combination of C and P, i.e. CP , transforms Fig. 13.4a into Fig. 13.4c. While
the violations of P and C are strongest possible, the product CP is to a good
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approximation conserved by weak interactions. If CP is invariant, Fig. 13.4c
must be physically observable. The angular distribution of the e+, with
respect to the τ+ polarization, can be obtained from that of the e− in τ−

decay, by a simple change of sign cos θ ↔ − cos θ in (24). This substitution
rule cos θ ↔ − cos θ in τ− ↔ τ+ may be used as a test of CP violation.

Finally, the energy spectrum and the width are given by

dΓ

dE
=
G2

F |p|
12 π3

[
ME(3M − 4E)−m2(2M − 3E)

]
, (13.25)

Γ =
G2

FM
5

192 π3
f

(
m2

M2

)
= Γ0 f

(
m2

M2

)
. (13.26)

The integrated width Γ depends on the fifth power of the energy released by

the decaying particle (which is M , in the case of massless decay products).
This power law is easy to understand since the dimension of G2

F is (mass)−4

and that of the width is (mass)+1. For a fermion of mass M decaying into
three massless fermions, the only mass involved is M , so G2

FM
5 naturally

appears. The huge difference by a factor of 1016 in the lifetimes of weakly
decaying particles (for instance between the charm D meson and the neutron)
essentially comes from this fifth power of the energy released. For neutron,
the energy liberated ≈ mn−mp−me is only 0.78 MeV, whereas for charmed
or bottom-flavored mesons, it can reach a few GeVs. A more accurate esti-
mate calls for more sophisticated computations, however this fifth power can
explain the huge differences in the lifetimes of weakly decaying particles.

Beside these tree diagram results, we should add the electromagnetic
radiative corrections to leptonic weak interactions. These corrections are due
to virtual photons in loops involving the charged τ and `, as well as to real
photons emitted by them (bremsstrahlung). There are in all five diagrams
similar to the five drawn in Figs. 14.2–3 with photons replacing gluons. The
calculation could be done similarly to that in Chap. 14. These corrections3

yield

1− αem

2π

(
π2 − 25

4

)
. (13.27)

Another type of corrections involves the W propagator effect if we do not

neglect q2 � M2
W in (1). This gives 1 + 3

5
M2

M2
W

− 2 m2

M2
W

. These two types of

corrections multiplied by (21) give

Γ = a2Γ0 f

(
m2

M2

) [
1− αem

2π

(
π2 − 25

4

)][
1 +

3

5

M2

M2
W

− 2
m2

M2
W

]
.(13.28)

3 Berman, S., Phys. Rev. 112 (1958) 267; Kinoshita, T. and Sirlin, A.,
Phys. Rev. 113 (1959) 1652



460 13 Muon and Tau Lepton Decays

These last two corrections are numerically small ≈ 4× 10−3, i.e. the product
of the last two factors of the above equation is 0.996. We note, however, that
one-loop QCD radiative corrections – relevant to the inclusive semileptonic τ
decay described by τ → ντ+ a quark pair (qi + qj), in which gluons replace
photons – are much more important, simply because (−αem/2π)×(π2−25/4)
is replaced by +αs/π, where the running coupling αs(M) turns out to be
≈ 0.37 at the appropriate scale M of the τ decays. As we will see in Chap. 14,
these one-loop QCD corrections, which enhance the Γ(τ → ντ +qi +qj) rate,
will consequently pull down the leptonic branching ratio from its naive 0.2
value (Sect. 13.2) to 0.186, closer to the observed Be = 0.1783± 0.0006.

Finally, we note that (24)–(26) and (28) also apply to µ− → νµ+e−+νe,
for which M and m are the muon and electron masses respectively.

13.3 Semileptonic Decays

The τ is the only lepton massive enough to decay into hadrons. Its semilep-
tonic channels in both exclusive and inclusive modes are ideal for studying
strong interaction in clean conditions.
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Hadrons ≡ H−.......................................................................

〈H− | Vµ | 0〉 ; 〈H− | Aµ | 0〉

Vµ = Vud dγµu+ Vus sγµu

Aµ = Vud dγµγ5u+ Vus sγµγ5u

Fig. 13.5. Semileptonic decays of τ−

These decays probe the matrix element of the V and A parts of the
charged current between the vacuum and the final hadronic stateH (Fig. 13.5).
Since these matrix elements are just the decay constants (if H is a single par-
ticle) or form factors (if H represents several particles), the importance of
semileptonic decays cannot be underrated. The two-pion modes [including
the ρ(770)] and more gererally the 2n-pion modes are the cleanest hadronic
channels in which the CVC property of the charged current dγµu (a con-
sequence of its isospin structure) can be unambiguously tested at relatively
high momentum transfer q2 released by τ .

13.3.1 The One-Pion Mode: τ− → ντ + π−

The relevant hadronic current sandwiched between a pseudoscalar pion and
the vacuum is Vud Aµ = Vud dγµγ5u and 〈π−(p) |Aµ | 0〉 ≡ i fπpµ. We note
that the pion decay constant fπ is the same parameter that enters the π`2

mode π → ` + ν` of Fig. 10.3a, and fπ is one of the most fundamental
constants frequently met in different circumstances in particle physics.
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The amplitude τ−(P )→ ντ (k) + π−(p) can be written as

M =
( −ig

2
√

2

)2

u(k)γν (1− γ5)u(P )
−i(gµν − pµpν

M2
W

)

p2 −M2
W

Vud

〈
π−(p) |Aµ | 0

〉

=
GF√

2
Vud M fπ u(k)(1 + γ5)u(P ) . (13.29)

Averaging the intial state τ spin, we get

1
2

∑

spin

|M|2 =
G2

F

2
|Vud|2M2 f2

π Tr
[
6k 6P (1− γ5)

]
= G2

F|Vud|2f2
πM

4

(
1− m2

π

M2

)
.

Applying (4.73) for the decay with two particles in the final state, we have

Γ(τ → ντ + π) =
1

2M

∫
d3k

2Ek

d3p

2Ep

δ4(k + p− P )

(2π)2
1
2

∑

spin

|M|2 .

Using the two-body phase space integral formula in the Appendix,

∫
d3k

2Ek

d3p

2Ep
δ4(k + p− P ) =

π

2

√
λ(P 2, 0, p2)

P 2
=
π

2

(
1− m2

π

M2

)
, (13.30)

we obtain

Γ =
G2

F|Vud|2
16π

f2
π M

3
(
1− m

2
π

M2

)2

= 12 π2 |Vud|2
f2

π

M2

(
1−m

2
π

M2

)2

Γ0 .(13.31)

This formula is to be compared with π− → µ− + νµ (Problem 5.3):

Γ(π− → `− + ν`) =
G2

F |Vud|2
8π

f2
πm

2
` mπ

(
1− m2

`

m2
π

)2

. (13.32)

From Γ(π− → µ− + νµ) = 0.384 × 108 s−1 = 2.53 × 10−14 MeV, one gets
fπ ≈ 131 MeV. Comparing (26) with (31), the ratio of the branching fractions

Bπ

Be
≡ Γ(τ− → ντ + π−)

Γ(τ− → ντ + e− + νe)
= 12π2 |Vud|2

f2
π

M2

(
1− m2

π

M2

)2

= 0.60

is in good agreement with data. A straightforward generalization can be
made for the Cabibbo-suppressed mode τ− → ντ +K−, with the interchange
Vud ↔ Vus and fπ , mπ ↔ fK, mK in (31). The decay constant fK ≈ 160 MeV
is obtained from the K− → µ− + νµ rate, similar to (32) for fπ . The ratio

BK

Bπ
≡ Γ(τ− → ντ + K−)

Γ(τ− → ντ + π−)
=
|Vus|2
|Vud|2

f2
K

f2
π

(M2 −m2
K

M2 −m2
π

)2

= 0.066

is in agreement with data.
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13.3.2 The 2n-Pion Mode and CVC

Before the discovery of τ , CVC was only tested at low momentum transfer
q2 in nuclear physics and neutrino–nucleon scattering (Chap. 12). For the
first time CVC can be tested at high momentum q2 released by τ . The
τ−(P )→ ντ(k) + π−(p1) + π0(p2) amplitude can be obtained from the weak
vector current Vµ = dγµu:

M =
GF Vud√

2
u(k)γµ(1− γ5)u(P )

〈
π−(p1)π

0(p2) |Vµ | 0
〉
. (13.33)

Using CVC, we can relate the two-pion matrix element of Vµ to that of the
electromagnetic current Jem

µ :

〈
π−(p1)π

0(p2) |Vµ | 0
〉

=
√

2
〈
π−(p1)π

+(p2)
∣∣ Jem

µ

∣∣ 0
〉

=
√

2 (p1 − p2)µFπ(q2) , (13.34)

where qµ = (p1+p2)µ. Fπ(q2) is the pion electromagnetic form factor, already
introduced in (10.11). The momentum transfer q2 is ≥ 4m2

π. We calculate

1
2

∑

spin

|M|2 = 4G2
F|Vud|2|Fπ(q2)|2

{
Y
}
,

{
Y
}

= 2 [k · (p1 − p2)] [P · (p1 − p2)]− (P · k)(p1 − p2)
2 . (13.35)

Using P = k + q and P · (p1 − p2) = k · (p1 − p2), we rewrite
{
Y
}

in the
following form which is convenient for the phase space integration:

{
Y
}

= 6 (k · p1)
2 + 2 (k · p2)

2 − 2 (M2 − q2) (k · p1) +
(M2 − q2) (q2 − 4m2

π)

2
.

With (35), the decay rate is given by

Γ = 4G2
F|Vud|2

1

2M

1

(2π)5

∫

PS3

{
Y
}
|Fπ(q2)|2 ,

where

∫

PS3

≡
∫

d3p1

2E1

d3p2

2E2

d3k

2E
δ4(p1 + p2 + k − P ) . (13.36)

Since (35) is symmetric under p1 ↔ p2, the phase space integration
∫
PS3

of

(k · p2)
2 in

{
Y
}

is equal to that of (k · p1)
2. With the help of formulas in the

Appendix, we get for different terms in
{
Y
}
:

∫

PS3

(k · p1)
2 =

π2

48

∫ M2

4m2
π

dq2
(

1− q2

M2

)√

1− 4m2
π

q2
(1 − m2

π

q2
)
(
M2 − q2

)2
,

∫

PS3

(k · p1) =
π2

16

∫ M2

4m2
π

dq2
(

1− q2

M2

)√

1− 4m2
π

q2
(M2 − q2) ,

∫

PS3

=
π2

4

∫ M2

4m2
π

dq2
(

1− q2

M2

)√

1− 4m2
π

q2
. (13.37)
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Putting together (35) and (37) into (36), we finally obtain

Γ =
G2

F |Vud|2M3

384 π3

∫ M2

4m2
π

d q2
(
1− 4m2

π

q2

)3/2 (
1− q2

M2

)2(
1 +

2 q2

M2

)
|Fπ(q2)|2

=
Γ0 |Vud|2

2

∫ M2

4m2
π

d q2

M2

(
1− 4m2

π

q2

)3/2 (
1− q2

M2

)2(
1 +

2 q2

M2

)
|Fπ(q2)|2 .

The pion form factor |Fπ(q2)| can be directly measured from experiments
e+ + e− → π+ + π−, its cross-section is given by (Problem 10.3)

σe++e−→π++π− (q2) =
π α2

3 q2

(
1− 4m2

π

q2

)3/2

|Fπ(q2)|2 ≡ σ(q2) , (13.38)

then Γ = Γ0
3 |Vud|2
2π α2

∫ M2

4m2
π

d q2

M2

(
1− q2

M2

)2(
1 +

2 q2

M2

)
q2 σ(q2) . (13.39)

Using the data4 for σ(q2) in (39) and performing numerical integration, the
resulting branching ratio B2 π = (23.54± 1.2)% is in agreement with exper-
iment (25.24 ± 0.16)%. Using only the e+ + e− → π+ + π− data as input,
this result constitutes a powerful test of CVC.

Also, for an even number of pions, the rate Γ(τ → ντ + 2n pions) can
be directly obtained by CVC from the cross-sections σ(e+ + e− → 2n pions)
using (39). In particular the branching ratios for τ− → ντ +π−+π++π−+π0

and τ− → ντ +π− +π0 +π0 +π0 are computed to be respectively (4.9±2)%
and (0.98± 0.4)%, using σ(e+ +e− → 4 pions) data. They are again in good
agreement with experiments.

We note that the two pions must be in an isospin I = 1 state since it is
created from the vacuum by the I = 1 vector current dγµu. Bose statistics
implies that the dipion is in p-wave. It turns out that in the energy range
∼ 1 GeV of τ decay, the p-wave two-pion state resonates to form the ρ(770)
meson: τ− → ντ + π− + π0 ≈ τ− → ντ + ρ−. This ρ(770) dominance
of the two-pion state enhances the pion form factor Fπ(q2) in the region
q2 ≈ m2

ρ. As discussed in Chap. 10 (Fig. 10.2), the form factor Fπ(q2) may
be parameterized by the Breit–Wigner resonance form

Fπ(q2) =
mρfρgρππ

m2
ρ − q2 − imρΓρ

−→ mρfρgρππ

m2
ρ − q2 − i

√
q2Γρ(q2)

. (13.40)

In (40), instead of keeping the constant imρΓρ, it may be more appropriate
to take into account the q2 dependence of the ρ width, i.e.

mρΓρ −→
√
q2Γρ(q

2) , where Γρ(q
2) = Γρ

m2
ρ

q2

(
q2 − 4m2

π

m2
ρ − 4m2

π

)3/2

. (13.41)

4 L.M. Barkov et al., Nucl. Phys. B256 (1985) 365
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Putting (40) into (38), after doing the q2 integration, the rate obtained is
again in excellent agreement with data. In the narrow width approximation
of the ρ, the Breit–Wigner factor becomes a delta function. Using

δ(x) = lim
ε→0

ε

π

1

x2 + ε2
,

we write

|Fπ(q2)|2 =

(
mρ fρgρππ

)2

(q2 −m2
ρ)2 + Γ2

ρm
2
ρ

−→
π δ(q2 −m2

ρ)

Γρmρ

(
mρ fρgρππ

)2
.(13.42)

We recall that the strong coupling gρππ is related to the ρ width Γρ by (10.20)

Γρ =
g2

ρππ mρ

48π

(
1− 4m2

π

m2
ρ

)3/2

.

Combining the above relation with (38) and (42), we get

σ(e+ + e− → ρ0) −→ 16α2π3
f2

ρ

m2
ρ

δ(q2 −m2
ρ) . (13.43)

Putting (43) in (39), we obtain

Γ(τ− → ντ + ρ−) = 24 π2 |Vud|2
f2

ρ

M2

(
1 +

2m2
ρ

M2

)(
1−

m2
ρ

M2

)2

Γ0 .(13.44)

According to (10.21) and Fig. 10.3, the ρ0 decay constant is fρ ≈ 150 ± 10
MeV coming from the ρ0 → e+ + e− width. We get

Bρ

Be
≡ Γ(τ− → ντ + ρ−)

Γ(τ− → ντ + e− + νe)
= 24π2|Vud|2

f2
ρ

M2

(
1 +

2m2
ρ

M2

)(
1−

m2
ρ

M2

)2

= 1.44± 0.2 =⇒ Bρ = 0.256± 0.035 . (13.45)

A straightforward generalization can also be made for the Cabibbo-suppressed
mode τ− → ντ + K∗−(892) by the substitution Vud → Vus , mρ → mK∗ ,
fρ → fK∗ in (44). However, the decay constant fK∗ , unlike the fρ, is diffi-
cult to determine by experiment. It may be estimated by the SU(3) flavor
symmetry, which gives mK∗ fK∗ = mρ fρ. We get BK∗ = (1.1± 0.1)% for the
branching ratio of τ → ντ + K∗ to be compared with data (1.43± 0.31)%.

The method for obtaining τ− → ντ + π− + π0 can be generalized to
the τ− → ντ + K− + K0 decay, which is also a Cabibbo-favored mode. The
K− + K0 pair (S = 0) can be created by the same conserved vector current
dγµu from the sea ss in the vacuum . The only replacements in (38) and
(39) are Fπ(q2)↔ FK(q2) and mπ ↔ mK. However, compared with the two-
pion case, the K− + K0 mode is suppressed by both kinematic and dynamic
reasons. Kinematic suppression is due to the factor 1

2 [1− (4m2
K/q

2)]3/2, and
the q2 phase space integration range is smaller. Dynamic suppression occurs
because an I = 1, JP = 1− resonance for K + K is lacking, the form factor
FK(q2) is not enhanced and is smaller than Fπ(q2). The sea ss contribution
is also negligible.
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13.4 The Method of Spectral Functions

Instead of considering semileptonic exclusive channels with one or two par-
ticles in the final state as we have just done, we introduce now the notion
of spectral functions which represent a more systematic way of dealing with
multiparticle system. The aim is to derive a general formulation, valid for
any hadronic channels, and all the formulas developed in the previous sec-
tion could be recovered. In addition, the formalism is useful later for the
computation of the inclusive rate.

The semileptonic decay width τ−(P ) → ντ(k) +H−, where H− is any
hadronic system of one or several particles, can be written as

Γ(τ− → ντ +H−) =
1

2M

G2
F

2

∫
d3k

2Ek(2π)3
1

2

{
2 Tr[ 6kγµ 6Pγν (1− γ5)]

}
Hµν ,

Hµν ≡
∑

PSH

〈
0 |Jµ |H−(pH)

〉 〈
H−(pH)

∣∣ J†ν
∣∣ 0
〉

(2π)4δ4(pH + k − P ). (13.46)

In (46), the coefficient 1
2 represents the averaging of the τ spin, while the

coefficient 2 before the trace comes from (1−γ5)
2 = 2(1−γ5) of the leptonic

tensor. Similar to (10.42), the hadronic tensor Hµν is the product of the
matrix element of the current Jµ with that of the current Jν†, where the
V − A current Jµ is the sum of two parts Vud dγ

µ(1− γ5)u and Vus sγ
µ(1−

γ5)u. The first term Vud dγ
µ(1 − γ5)u carries isospin I = 1 and strangeness

S = 0, while the second term Vussγ
µ(1− γ5)u has I = 1/2 and S = −1. The

symbol
∑

PSH
of Hµν in (46) denotes the phase space integration of the final

state in H− (including the spin summation):

∑

PSH

≡
∫ ∏

j∈H

[ d3pj

2Ej(2π)3

]
, with pH ≡

∑

j

pj = P − k ≡ q .

No matter how complicated Hµν is, it has two general features:
(i) Hµν has the dimension of (mass)2, we can check this point by in-

specting the dimension of the different terms in (46).
(ii) After doing the phase space integration of all the particles in H−

and summing over their spins, the four-momentum transfer q remains as the
only dynamical variable in Hµν (q). Therefore the latter must be a function
of the Lorentz-invariant q2 and can only depend on the tensors qµqν and gµν .
They can be conveniently put into two independent sets (−q2gµν +qµqν) and
qµqν which are respectively orthogonal and parallel to the four-momentum
q, i.e. the former satisfies qµ(−q2gµν + qµqν) = 0, qν(−q2gµν + qµqν) = 0.
It is important to note that the hadronic state H− (whether a single or
multiparticle system) has a total angular momentum j = 1 or 0, since H−

is created from the vacuum by the virtual W boson which carries at most
j = 1.
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These two features enable us to write the most general form for Hµν in
terms of the dimensionless spectral functions

∑

PSH

〈
0 |Jµ |H−(pH)

〉 〈
H−(pH)

∣∣ Jν†
∣∣ 0
〉

(2π)4δ4(pH − q)

= (−q2gµν + qµqν) [v1(q
2) + a1(q

2)] + qµqν [v0(q
2) + a0(q

2)] .

(13.47)

The v1,0(q
2) come from the vector currents, the a1,0(q

2) from the axial cur-
rents. The subscript 1 in v1(q

2) and a1(q
2) corresponds to the total angular

momentum j = 1 of H−, whereas v0(q
2) and a0(q

2) are associated with
j = 0. Note that the vector current V µ = dγµu is conserved (qµ dγ

µu = 0),
the product of the matrix element of V µ with that of V ν† gives rise, after the
phase space

∑
PSH

operation, to the tensor (−q2gµν + qµqν). This implies

that only v1(q
2) exists, while v0(q

2) = 0.
On the other hand, the axial current Aµ = dγµγ5u is not conserved,

the product of the matrix element of Aµ with that of Aν† contains both
(−q2gµν + qµqν)a1(q

2) and qµqνa0(q
2). Because of the G-parity, the cur-

rent V µ (Aµ) produces an even (odd) numbers of pions in the final state.
Table 13.1 summarizes the point.

Table 13.1. Spectral functions of currents and the associated final states

Currents Spectral functions JP Final states

V µ = dγµu v1(q
2) , v0(q

2) = 0 1− ρ− , 2π , 4π , K− + K0

Aµ = dγµγ5u a1(q
2) , a0(q

2) 0− , 1+ π− , 3π , a−

1 (1260)

V µ

S
= sγµu vS

1 (q2) , vS
0 (q2) 0+ , 1− K∗−

0 (1430) , K∗−(892)

Aµ

S = sγµγ5u aS
1 (q2) , aS

0(q2) 0− , 1+ K− , K−

1 (1270)

Since (47) is symmetric in µ ↔ ν , when we put Hµν into (46), the role
of γ5 in the leptonic part Tr[ 6kγµ 6Pγν(1 − γ5)] is automatically superfluous,
its antisymmetric tensor i εµναβ k

αP β does not contribute. Note that

∫
d3k

2Ek
=

π

2M2

∫ √
λ(M2, k2, q2) dq2 −→

k2=0

π

2M2

∫
(M2 − q2) dq2 . (13.48)

With massless neutrino (k2 = 0), using (46), (47), and (48), we obtain for
the Cabibbo-favored modes associated with Vud and the current dγµ(1−γ5)u

ΓS=0 =
G2

F|Vud|2
32π2M3

∫ M2

m2
π

dq2 (M2 − q2)2

×
{

(M2 + 2q2)[v1(q
2) + a1(q

2)] +M2a0(q
2)
}
. (13.49)
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Associated with Vus, the vector part sγµu of the I = 1
2 , S = −1 current

sγµ(1− γ5)u is not conserved, so the corresponding spectral function vS
0 (q2)

is not vanishing. This Cabibbo-suppressed width is

ΓS=−1 =
G2

F|Vus|2
32π2M3

∫ M2

m2
K

dq2 (M2 − q2)2

×
{

(M2 + 2q2)[vS
1 (q2) + aS

1 (q2)] +M2[vS
0 (q2) + aS

0 (q2)]
}
.(13.50)

Formulas (49) and (50) show that the calculation of the rate is reduced to a
computation of the spectral functions.

We can check the general structure (47) ofHµν(q) with one-particle state
by putting H− = π− , ρ− in (47) and find

aπ
0 (q2) = 2πf2

π δ(q
2 −m2

π) ; vρ
1(q2) = 2π(

√
2fρ)

2 δ(q2 −m2
ρ) . (13.51)

The easiest way to obtain aπ
0 (q2) in (51) is to use

〈0 |Aµ | π(pH)〉 = i fπ p
µ
H and

d3pH

(2π)3 2EH
=

d4pH

(2π)3
δ(p2

H −m2
π)θ(p0

H) .

The tensor (−q2gµν + qµqν) associated with vρ
1(q2) comes from

∑

ρ spin

εµ(q) εν(q) = −gµν + qµ qν/m2
ρ .

Putting (51) into (49), we recover (31) and (44).
For the two-pion state π− + π0, the corresponding spectral function

vππ
1 (q2) can be obtained by putting (34) into (47) and using the formulas in

the Appendix for the two-particle phase space integration. We get

vππ
1 (q2) =

(
1− 4m2

π

q2

)3/2 |Fπ(q2)|2
12π

. (13.52)

Putting (52) into (49), we again recover (38) and (39).

13.4.1 The Three-Pion Mode

As a first illustration of the spectral function method, let us consider the
τ− → ντ + 3π decay which has a substantial branching ratio of about 18%
for the sum of two modes π− + π+ + π− and π− + π0 + π0. By the G-parity
conservation, the vector current V µ = dγµu, which has G=+1, does not
contribute. The relevant axial current Aµ = dγµγ5u, responsible for τ →
ντ + 3 π, is the same current that intervenes in the one-pion mode discussed
previously. However, in contrast to the one-pion or the two-pion decays for
which everything in the amplitude (29) or (34) is known, the matrix element
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〈3 π |Aµ | 0〉 for the three-pion mode is more complicated and poorly known.
Its most general expression depends on three form factors H1, H2, H3, each
of which is a function of three kinematical variables q2, s1, s2 defined below,
and consequently the decay rate calculation is rather model dependent. The
three-pion decay amplitude is given by

M =
GF√

2
Vudu(k)γµ(1− γ5)u(P ) 〈π1(p1) , π2(p2) , π3(p3) |Aµ | 0〉 ,

〈π1(p1) , π2(p2) , π3(p3) |Aµ | 0〉 =
∑

i=1,2,3

Hi(q
2, s1, s2)

pµ
i

mπ
,

q2 = (p1 + p2 + p3)
2 , s1 = (p2 + p3)

2 , s2 = (p1 + p3)
2 . (13.53)

The existence of three form factors is easy to understand, since the only
degrees of freedom for spinless pions are their momenta. The most general
covariant structure of 〈3 π |Aµ | 0〉 can be expressed in terms of these three
independent momenta pµ

i taken as a basis, their coefficients are the form
factors Hi. Kinematically, each of these form factors is considered as a four-

point function which connects the off-mass-shell W gauge boson to the three
on-shell pions. The four-point function depends on q2 (the virtual mass
squared of the W) as well as on two independent Mandelstam variables that
can be chosen as s1 and s2. These form factors Hi(q

2, s1, s2) are not well
determined, unlike the more familiar Fπ(q2) in the two-pion case.

To compute the three-pion rate, the first approximation consists of con-
sidering the 3π as a quasi-two-body state ρ(770) + π followed by ρ → 2 π.
Then the matrix element may be written as

〈ρ(p), π(p′) |Aµ | 0〉 = mρ ε
µK1(q

2) +
ε · q
mρ

[
(p− p′)µK2(q

2) + qµK3(q
2)
]

where εµ is the four-vector polarization of the ρ and the three dimensionless
form factorsKi(q

2) depend only on q2 = (p+p′)2 = (p1+p2+p3)
2. These form

factors Ki(q
2) may be considered as linear combinations of the Hi(q

2, s1, s2)
in the limit where two pions form a ρ resonance. Then from the ρ propagator,
the dependence of Hi(q

2, s1, s2) on the variables sj=1,2 would take the Breit–
Wigner shape similar to (40), i.e. the sj are concentrated near m2

ρ as
[
m2

ρ −
sj − i

√
sjΓρ(sj)

]−1
(Fig. 13.6).
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The next approximation is to assume the dominance of two resonances,
the axial a1(1260) meson (JP = 1+) and the pseudoscalar π(1300) ≡ π′

meson. In analogy with the decay τ → ντ +ρ followed by ρ→ 2 π considered
previously, the three-pion mode may be approximated by τ → ντ + a1(1260)
and τ → ντ + π′ followed by a1(1260) → 3π and π′ → 3π. The spectral
functions

a3π
1 (q2) = 2π f2

a1
δ(q2 −m2

a1
) , a3π

0 (q2) = 2π f2
π′ δ(q2 −m2

π′ ) , (13.54)

correspond to the zero-width approximation of both a1(1260) and π′, where
the decay constants fa1

and fπ′ of a1(1260) and π′ are defined by
〈
a−1 (1260) |Aµ | 0

〉
= ma1

fa1
εµ , 〈π′(p) |Aµ | 0〉 = i fπ′pµ .

Unlike fπ and fρ, the fπ′ and fa1
are not well determined experimentally.

Weinberg sum rules5 may be useful for an estimate of fa1
. In our notation,

the first Weinberg sum rule is written as

f2
ρ± − f2

a1
= f2

π , where fρ± =
√

2fρ . (13.55)

The crudest estimation consists in keeping only a3π
1 (q2) and neglecting a3π

0 (q2).
Using (49), the three-pion rate is given by

Γ(τ− → ντ + 3π)

Γ(τ− → ντ + 2π)
=

Γ(τ− → ντ + a−1 )

Γ(τ− → ντ + ρ−)

=
f2
a1

f2
ρ±

(
M2 −m2

a1

M2 −m2
ρ

)2
M2 + 2m2

a1

M2 + 2m2
ρ

. (13.56)

Combining (56) with (55), the branching ratio Br(τ− → ντ + 3π) is found
to be ≈ 9%, lower than the data by a factor of 2. Since both the ρ and
the a1(1260) are broad resonances, this zero-width approximation is rather
poor. One may improve the estimation by replacing δ(q2 − m2

a1
) with a

Breit–Wigner factor, in analogy with the ρ case discussed in (41) where the
q2 dependence of the width is taken into account. We write

δ(q2 −m2
a1

) −→ Γa1
(q2)

√
q2

π

1

(q2 −m2
a1

)2 + q2 Γ2
a1

(q2)
,

Γa1
(q2) = Γa1

m2
a1

q2

(
q2 − 9m2

π

m2
a1
− 9m2

π

)3/2

, where Γa1
∼ 400 MeV ,

a3π
1 (q2) =

2 f2
a1

Γa1
(q2)

√
q2

(q2 −m2
a1

)2 + q2 Γ2
a1

(q2)
.

One may use this formula for a3π
1 (q2) and plug it into (49) to extract the

decay constant fa1
from the experimental branching ratio. The result is

encouraging and gives fa1
≈ 250 MeV.

5 S. Weinberg, Phys. Rev. Lett. 18 (1967) 507
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13.4.2 Spectral Functions of Quark Pairs

We calculated in the previous sections many exclusive modes τ− → ντ +H−,

where H− are π−, K−, π− +π0, (including ρ−, K∗−), K− +K
0
, 3π. The sum

of these dominant decays almost saturates the observed semileptonic width,
but still leaves out many other channels. We would like however to sum
over all the exclusive semileptonic rates, which is, by definition, the inclusive
decay rate Γ(τ− → ντ+ hadrons). Doing such a sum, i.e. computing the
whole spectral functions v1,0(q

2) and a1,0(q
2) for several particles, is not only

cumbersome but also involves large uncertainties due to our lack of knowledge
of the involved form factors. We must look for another approach.

Fortunately, the energy released by the heavy τ is large enough (on the
QCD scale) that the quark-parton model is presumably valid. Then the
inclusive rate may be saturated by τ− → ντ + d + u and τ− → ντ + s + u.
This saturation has the name of quark-hadron duality. For the calculation of
these two rates, we need the spectral functions of quark pairs which replace
those of all the exclusive hadronic states.

Let us denote the pair carrying the same color j (since it is created
from the colorless W±) by q2 + q3 with momentum p2, p3 and mass m2, m3

respectively. Defined in (46), the hadronic tensor Hµν
q2q3

associated with the
quark pair q2+q3 in τ−(P )→ ντ (k) + q2(p2) + q3(p3) is

Hµν
q2q3

= |Vq2q3
|2
∫

d3p2

2E2

d3p3

2E3

δ4(p2 + p3 − q)
(2π)2

8 [pµ
2 p

ν
3 + pν

2 p
µ
3 − gµν (p2 · p3)] ;

the last factor 8 [pµ
2 p

ν
3 + pν

2 p
µ
3 − gµν (p2 · p3)] comes from the trace of

|u(p2)γ
µ(1−γ5)v(p3)|2. In fact, the latter is a sum of a vectorial and an axial

parts, which are given respectively by 4 [pµ
2 p

ν
3 +pν

2 p
µ
3 −gµν (p2 ·p3±m2m3)].

Their interference 8 i εµναβ(p2)α(p3)β does not contribute, since the integra-
tion is symmetric in p2, p3. We calculate the integration of the vectorial part
first. With the implicit factor |Vq2q3

|2/π2 , the following quantity is to be
evaluated:

∫
d3p2

2E2

d3p3

2E3
δ4(p2 + p3 − q) [pµ

2 p
ν
3 + pν

2 p
µ
3 − gµν (p2 · p3 +m2m3)] .(13.57)

This equation has the general form −Aq2 gµν +B qµqν which can be rewrit-
ten as (−q2 gµν + qµqν)A + qµqν (B − A). Multiplying respectively (57) by
gµν and qµqν , we get two equations for two unknowns A and B:

q2 (B − 4A) = [−q2 +m2
2 +m2

3 − 4m2m3]

∫
d3p2

2E2

d3p3

2E3
δ4(p2 + p3 − q) ,

q4(B −A) =
(m2 −m3)

2 [q2 − (m2 +m3)
2]

2

∫
d3p2

2E2

d3p3

2E3
δ4(p2 + p3 − q) .
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Using (30) for the double integral of the above equation, the analytic expres-
sions of A and B are obtained. Comparing with (47), we can identify the
term A as v1(q

2) and (B−A) as v0(q
2) (modulo the factor |Vq2q3

|2/π2 ). For
each color, the spectral functions of the quark pair q2 + q3 are found to be

v1(q
2) =

|Vq2q3
|2

12 π

√
λ(q2, m2

2, m
2
3)

q2

{
2− m2

2 +m2
3 − 6m2m3

q2
− (m2

2 −m2
3)

2

q4

}
,

v0(q
2) =

|Vq2q3
|2

4 π

√
λ(q2, m2

2, m
2
3)

q2

{
(m2 −m3)

2

q2
− (m2

2 −m2
3)

2

q4

}
. (13.58)

If m2 = m3, the vector current q2γ
µq3 is conserved, and as expected, we

get v0(q
2) = 0. The multiplicative color factor Nc = 3 must be included on

the right-hand side of (58), since we sum over the quark colors. The a1(q
2)

[a0(q
2)] can be deduced respectively from v1(q

2) [v0(q
2)] by changing only

m3 → −m3 in (58). We get

ρ1(q
2) ≡ v1(q2) + a1(q

2) =
C(q2)

6 π

{
2− m2

2 +m2
3

q2
− (m2

2 −m2
3)

2

q4

}
,

ρ0(q
2) ≡ v0(q2) + a0(q

2) =
C(q2)

2π

{
m2

2 +m2
3

q2
− (m2

2 −m2
3)

2

q4

}
, (13.59)

where C(q2) ≡ Nc |Vq2q3
|2
√
λ(q2, m2

2, m
2
3)/q

2 . Putting (59) into (49) or
(50) accordingly, the width Γ(τ− → ντ + q2 + q3) is given by

Γ =Nc
G2

F |Vq2q3
|2

192π3M3

∫ M2

(m2+m3)2
dq2(M2 − q2)2

√
λ(q2, m2

2, m
2
3)

q2

×
[
(M2 + 2q2)

(
2− σ

q2
− δ2

q4

)
+ 3M2

(
σ

q2
− δ2

q4

)]
,

σ ≡ m2
2 +m2

3 , δ ≡ m2
2 −m2

3 , lim
m2,m3→0

Γ = Nc |Vq2q3
|2 Γ0 . (13.60)

Using this formula, we compute the Cabibbo-favored decay width ΓS=0 ≡
Γ(τ− → ντ +d+u) and the Cabibbo-suppressed ΓS=−1 ≡ Γ(τ− → ντ +s+u).
Their sum saturates the inclusive semileptonic width Γ(τ− → ντ +hadrons).

For ΓS=0, we take md = mu = m and define t = q2/M2 , η = m2/M2.
The result is

ΓS=0 = 2Nc |Vud|2 Γ0

∫ 1

4 η

dt (1− t)2
√

1− 4
η

t

{
(1 + 2t)

(
1− η

t

)
+ 3

η

t

}
,

=Nc |Vud|2 Γ0G

(
m2

M2
,
m2

M2

)
, (13.61)

G(x, x) =
√

1− 4x
[
1− 14x− 2x2 − 12x3

]
+ 24 x2 (1− x2) log

1 +
√

1− 4x

1−
√

1− 4x
.
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The ΓS=−1 can be obtained similarly. Here the two masses m2 = ms and
m3 −mu are unequal, the phase space integration in (60) is more involved,

ΓS=−1 = Nc |Vus|2 Γ0G

(
m2

2

M2
,
m2

3

M2

)
, where

G(x, y) =
√
λ(1, x, y)

[
1− (x+ y)(7 + 6xy) − (x2 + y2) + (x− y)2(x+ y − 6)

]

+ 12

[
x2(1− y2) log

1 + x− y +
√
λ(1, x, y)

1 + x− y −
√
λ(1, x, y)

+ (x↔ y)

]
. (13.62)

Note that G(x, y) = G(y, x). When x or y vanishes, (22) is recovered:

G(x, 0) = G(0, x) = f(x) = 1− 8x+ 8x3 − x4 − 12x2 logx .

The phase space factor (62) multiplied by Γ0 is the width of a fermion F of
mass M decaying into three other fermions F → f1 + f2 + f3, when one of
the three final fermions is massless. If the three fermions are massive with
masses mk 6= 0 , k = 1, 2, 3, the width is obtained by combining (46), (48),
and (59). Thus Γ(F→ f1 + f2 + f3) = Γ0 I(η1, η2, η3) , with ηk = m2

k/M
2:

I(η1, η2, η3) =
1

M8

∫ (M−m1)
2

(m2+m3)2

dq2

q2

√
λ(M2, m2

1, q
2)
√
λ(q2, m2

2, m
2
3)

×
[(

2− σ

q2
− δ2

q4

)
Φ1(q

2) + 3

(
σ

q2
− δ2

q4

)
Φ0(q

2)

]

Φ1(q
2) = (M2 − q2)(M2 + 2q2)−m2

1 (2M2 − q2 −m2
1) ,

Φ0(q
2) = (M2 − q2)M2 −m2

1 (2M2 + q2 −m2
1) . (13.63)

This phase space factor I(η1, η2, η3) is totally symmetric in the permuta-
tion of the three arguments (Problem 13.8). Of course, I(0, x, y) = G(x, y),
I(0, x, x) = G(x, x), I(0, 0, x) = f(x), and I(0, 0, 0) = 1.

The formula for I(η1, η2, η3) is particularly important when we study the
heavy–flavored D and B meson decays (Chap. 16). In the limit mk = 0 for
all k, we recover ΓS=0 = Nc |Vud|2 Γ0, and ΓS=−1 = Nc |Vus|2 Γ0, thus

Γ(τ− → ντ + hadrons)

Γ(τ− → ντ + e− + νe)
= Nc (|Vud|2 + |Vus|2) ≈ Nc . (13.64)

The relation (64), like the ratio R defined in (7.132), may also be derived by
the color-counting argument (5). We have (see also Sect. 7.5),

R =
σ(e+ + e− → hadrons)

σ(e+ + e− → µ+ + µ−)
= Nc

∑

k

Q2
k , (13.65)

where Qk is the charge (in units of e > 0) of the quark k.
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We close this section with a remark. First, we consider many exclusive
hadronic channels of the τ decay, their rates are given by (31),(39), (56) in
which enter parameters taken from elsewhere, like fπ , fρ, fa1

and σ(e+ +
e− → π+ + π−). These parameters are not at all directly related to the
τ properties. When all of these exclusive decay rates are summed up, it is
quite possible a priori that the sum exceeds the inclusive rate NcΓ0G(x, y)
described by the quark picture, which would be disastrous. Remarkably, the
sum approaches NcΓ0G(x, y) from below and nearly saturates NcΓ0G(x, y).
These quantitatively correct results support the quark-hadron duality.

Problems

13.1 The forbidden mode π− +η. Explain why Γ(τ− → ντ +π−+η)�
Γ(τ− → ντ + K− + η) � Γ(τ− → ντ + π− + π0). Also why Γ(η → 2π) �
Γ(η → 3π).

13.2 Angular distribution in τ− → ντ + π−. For a τ− at rest, its
neutrino and the π− come out back-to-back. Since ντ has helicity −1, show
that the π− prefers to be emitted parallel to the spin direction S of the τ−.
This property is confirmed by the following angular distribution. Show that

dΓ(τ∓ → ν + π∓)

d cos θ
=
G2

F |Vud|2
32π

f2
π M

3

(
1− m2

π

M2

)2

(1± cos θ) ,

where θ is the angle between S and the three-momentum of the π. Notice the
± cos θ of the above equation is opposite to ∓ cos θ in (24). Draw diagrams
similar to Fig. 13.4 to explain this change of sign.

13.3 Michel parameter ρ and Fierz rearrangement. Consider the
weak decay of a fermion F into three massless fermions, F→ f1 + f2 + f3.
In the standard model, its matrix element has the structure (V − A) ×
(V −A). Let us write it asK12[(V− A)×(V −A)] ≡ f1γ

µ(1−γ5)F f2γµ(1−
γ5)f3, the Fermi coupling GF/

√
2 is omitted. Show that the amplitudes

K12[(V∓ A) × (V ∓A)], K12[V ×V], and K12[A× A] give rise to ρ = 3/4,
whereas K12[V× (V ± A)] andK12[A× (V ± A)] yield ρ = 3/8. For the am-
plitude K12[(V ∓A) × (V ±A)], one gets ρ = 0. Using the Fierz rearrange-
ment formulas given in the Appendix, K12[(V ∓A)×(V ± A)]↔ K21[S× P],
we then again understand ρ = 0.

13.4 Experimental determination of fK∗ , fπ′ , and fa1
. Why are these

decay constants difficult to be measured, contrary to fπ and fρ ?

13.5 Strong evidence against the S, P structure from π decay.

Write the matrix element of π→ `+ ν` if the weak interaction is of the S, P
types. Compute the rate and show that

π− → e− + νe

π− → µ− + νµ
∼ 1 , which is in strong disagreement with experiments .
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13.6 Neutron decay n → p + e− + νe. We recall from (12.52) that the
matrix element of the weak current Vuduγµ(1 − γ5)d, sandwiched between
the neutron and the proton, has four form factors. Explain why only two of
them dominate the neutron β-decay matrix element. The other two could be
neglected, which ones? Compute the decay rate, using mn = 939.5656 MeV,
mp = 938.2723 MeV, me = 0.5109 MeV, |Vud| = 0.9736. Compare it with
the neutron lifetime 887 ±2 s. Deduce g1(0) .

13.7 W propagator effect. Derive the last factor of (28), which is

1 + 3
5

M2

M2
W

− 2 m2

M2
W

.

13.8 Decay rate of a fermion into three massive fermions. Let us
write the matrix element of F(P )→ f1(p1) + f2(p2) + f3(p3) as

M =
GF√

2
u(p1)γµ(1− γ5)u(P ) u(p2)γ

µ(1− γ5)v(p3) .

First compute Y ≡ 1
2

∑
spin |M|2, keeping all final-state masses m1,2,3 6=

0. Express Y in terms of s = (p1 + p2)
2 and M2, m2

k. Show that Γ =
Γ0J(η1, η2, η3), ηk = m2

k/M
2, where the phase space factor J(η1, η2, η3) is

J(η1, η2, η3) =
12

M8

∫ (M−m3)
2

(m1+m2)2

ds

s

√
λ(M2, m2

3, s)
√
λ(s,m2

1, m
2
2)

× (s−m2
1 −m2

2) (M2 +m2
3 − s) , (13.66)

implying that J(η1, η2, η3) is symmetric in the permutation of m1 and m2.
Compare J(η1, η2, η3) with I(η1, η2, η3) in (63). Show that J(η1, η2, η3) must
be equal to I(η1, η2, η3). So, J(x, y, z) = I(x, y, z) is totally symmetric by
permutation of their three arguments. What happens if the interaction is of
the (V + A)× (V − A) type ? Show that the integrated width is identical to
that of the (V − A)× (V −A) type.
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