
12 The Neutrinos

“The neutrino is the smallest bit of material reality ever conceived of by
man; the largest is the universe. To attempt to understand something of
one in terms of the other is to attempt to span the dimension in which lie
all manifestations of natural law.” These comments were made in 1956 by
Cowan and Reines in their report on the definite evidence of the neutrino1,
the elementary particle that Pauli postulated 26 years earlier in his attempt to
explain the continuous energy spectrum of the electrons emitted by β-decays
of nuclei: N1(Z)→ N2(Z + 1) + e− + νe.

Many years later, the acute insight of the neutrino discoverers remains
astonishingly topical. Because of their abundance in nature, if the neutrinos
have a tiny but nonzero mass, they would play a crucial role in the evolution
of the universe and fulfill their mission of bridging the gap separating the
two extreme scales of physics. So the first three sections are devoted to
the question of their masses, through the fascinating possibility for neutrino
species to transmute into each other (a process called neutrino oscillations)
and a related problem known as the solar νe deficit. Next, the crucial role of
neutrinos in the discovery of weak neutral currents is emphasized, in relation
to the neutrino scattering by the electron. The evidence for neutral currents
in turn leads to the confirmation of the standard model and the prediction of
the gauge boson W± and Z0 masses, long before their observations. Finally,
deep inelastic neutrino–nucleon collision is shown to be a powerful probe of
the quark and gluon constituents of matter. Neutrinos and electrons play
complementary roles in their respective weak and electromagnetic reactions
which may be exploited to determine the quark fractional charges. All of
these topics constitute the core of the standard electroweak theory and its
possible extensions for which an active research on the neutrino masses is
crucial.

12.1 On the Neutrino Masses

Three neutrino species are known to exist: the electron neutrino νe, the
neutrino νµ associated with the muon and the neutrino ντ associated with

1 Nature 178 (1956) 446. In fact, it was the antineutrino νe emitted in
nuclei β-decay (Savannah River reactor).
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the τ lepton. Until now evidence for the existence of ντ is only indirect from
the τ decay modes, in contrast with the first two νe and νµ which are directly
observed. Altogether, there are now six leptons in nature: three neutral
(νe , νµ , ντ ) and three charged (e− , µ− , τ−), as well as the six corresponding
antileptons. One of the most remarkable experiments performed on the LEP
collider at CERN is the establishment of the number of neutrino species
that have exactly the same properties as the νe (identical V − A coupling,
massless or almost massless). There must exist only three neutrino families,
otherwise the Z0 width would exceed its current value by at least 167 MeV
(see Problem 9.5).

In distinction with all other fermions, the neutrinos are sensible only
to weak interactions. The following example may illustrate the distinctive
character of these unique particles: of the sixty billions or so of neutrinos
that come out of the sun and that pass through each cm2 of the earth surface
per second, very few will interact with matter, the cross-section of neutrino
interacting with matter being so vanishingly small.

12.1.1 General Properties

In the Glashow–Salam–Weinberg (GSW) standard model, the following as-
sumptions on the neutrinos are explicitly made:

(i) their masses are identically zero;
(ii) only their left-handed components ψL ≡ 1

2

(
1− γ5

)
ψ are operative in

physical processes.
The right-handed components of neutrinos ψR ≡ 1

2

(
1 + γ5

)
ψ, even if

they exist, do not interact with other particles and are thus absent from the
Lagrangian. We also recall that for a massless fermion, σ · p̂ψL = −ψL,
i.e. the left-handed neutrino is also the eigenstate of the helicity operator
σ · p̂ with eigenvalue −1, its spin σ is antiparallel to its three-momentum
p. If the neutrino is left-handed, the antineutrino is right-handed (its spin
is then parallel to its momentum). These properties are explicit in the Weyl
representation, suitable for two-component massless neutrinos (Chap. 3).

The second assumption (ii) is based on, among others, the experimental
observation of the electron asymmetry from a polarized nucleus in its β-decay
(Sect. 5.1), on the energy and asymmetry distributions of the electron in µ
and τ decays (Chap. 13), and on the direct determination of the neutrino
helicity in a key experiment by Goldhaber et al. (Further Reading). All of
these data definitely establish the V −A character of the charged currents.

Because of these assumptions, there is a distinction between the leptons
and the quarks in their weak interactions with the gauge bosons W±, Z0. To
describe these interactions (see Table 9.5), the left-handed fermions are put
in SU(2) doublets and the right-handed fermions in U(1) singlets. Only left-
handed doublets are coupled to W±, while both left and right components
couple to Z0. In the leptonic sector, we remark the absence of right-handed
neutrinos νR and of mixing between the lepton families, to be contrasted with
the Cabibbo–Kobayashi–Maskawa (CKM) mixing among the quark families.
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12.1.2 Dirac or Majorana Neutrino?

A neutral fermion may exist either as a Dirac particle (fermion 6= antifermion)
or as a Majorana particle (fermion ≡ antifermion). For a Dirac fermion
(neutral or charged), the mass term is −mψψ = −m (ψR + ψL)(ψR + ψL) =
−m (ψRψL + ψLψR) since ψRψR and ψLψL vanish using (9.7)–(9.9). The
mass term always connects the opposite chiral components of the same field.
The absence of either, ψR or ψL, automatically leads to m = 0.

If the neutrinos are of the Majorana type, even in the absence of right-
handed components, we can build a mass term by using the antiparticle which
is identical to its conjugate, only with opposite chirality. Indeed, contrary to
charged fermions, the neutrino and the antineutrino, being chargeless, can
be self-conjugated νM ≡ νc

M. They are called the Majorana neutrino νM.
To each fermionic field ψ there corresponds the field of its antiparticle,

denoted by ψc, obtained with the help of the charge conjugation operator

C = iγ2γ0 (Chap. 5). We have ψc ≡ CψC−1 = iγ2γ0ψ
T

= iγ2ψ∗. The field of
a fermion F is ψ and the field of its antifermion F is ψc.

While for a charged fermion mψψ is the only possible mass term, for
a neutral fermion there are other possibilities. In addition to the standard
term ψψ, the terms ψcψc , ψ

c
ψ, and ψψc are equally valid. The first ψ

c
ψc is

equivalent to ψψ, but the last two, ψ
c
ψ and ψψc, may be written respectively

as ψ
c

LψL + ψ
c

RψR and ψLψ
c
L + ψRψ

c
R. Indeed

ψc
L ≡ (ψL)c = CψLC−1 = iγ2ψ∗

L = 1
2

(1 + γ5)ψ
c ,

ψc
R ≡ (ψR)c = CψRC−1 = iγ2ψ∗

R = 1
2

(1− γ5)ψ
c ,

ψ
c

L = ψ
c 1

2
(1− γ5), ψ

c

R = ψ
c 1

2
(1 + γ5) .

If the neutrino is a Majorana fermion, we can always construct a mass term
ψ

c

LψL + ψLψ
c
L without the right-handed component ψR precisely because ψc

L

is right-handed with positive helicity.
The existence of Majorana neutrinos implies that their interactions vio-

late the leptonic number L`. Since νM is (ψ+ψc)/
√

2, the weak charged cur-
rent connecting the electron to the Majorana neutrino contains both Le = ±1
terms. The most spectacular manifestation of νM would be the neutrinoless
double β-decay of nuclei N1(Z) → N2(Z+2)+e− +e− (Fig. 12.1a), denoted
by (ββ)0ν . The initial state has zero leptonic quantum number (Le = 0),
while the final state with two electrons has Le = 2. In (ββ)0ν , the Majorana
neutrino νM emitted by n→ p+e− +νM can be absorbed by the second neu-
tron n′ to become p′ + e−. This is because νM does not have a well-defined
lepton number; when emitted by n , it has Le = −1 and when reabsorbed by
n′ , it has Le = +1.

On the other hand, with the Dirac neutrino for which the leptonic num-
ber is conserved, double β-decay N1(Z) → N2(Z + 2) + e− + e− + νe + νe

(Fig. 12.1b), referred to as (ββ)2ν , can only occur with two antineutrinos νe
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emitted together with two electrons. Unlike the νM, the Dirac νe emitted in
n→ p + e− + νe cannot be absorbed by n′ to become p′ + e−.

By energy-momentum conservation, the energy spectrum of the two-
electron system in (ββ)2ν decay with Dirac neutrinos is continuous. In (ββ)0ν

by Majorana neutrinos, the same two-electron energy spectrum has a sharp
peak (ideally a delta function) which is the distinctive signature of this decay
mode. The amplitudes of both (ββ)2ν and (ββ)0ν are of the second order
in the Fermi constant GF, therefore their rates are very low; nevertheless
positive results of the standard decay mode (ββ)2ν have been reported2 for
nine different isotopes, with half-lives in the range of 1019 − 1024 years. Ex-
periments have been carried out to observe neutrinoless (ββ)0ν decays of the
136Xe, 76Ge , 48Ca isotopes, but the results were not conclusive2. If the
electron–νM mixing (Vlep below) is small, and/or if the νM mass is too small
(through the νM propagator effect), then (ββ)0ν may still escape observation.
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Fig. 12.1. (a) Double neutrinoless (ββ)0ν decay by Majorana neutrino; (b) double
(ββ)2ν decay by Dirac neutrino

Remarks. (i) Unlike the electromagnetic U(1) local symmetry, the leptonic
number symmetry does not govern the dynamics; rather it is a consequence
of the dynamics and the field contents of the standard model. In other
words, there is nothing sacred about the leptonic number conservation. If
this quantum number is broken, the left-handed neutrino νL and the right-
handed antineutrino νc

R will constitute the left- and right-handed components
of the same field (the Majorana neutrino) and a mass term with only νL can
be constructed. This self-conjugacy is the reason why a Majorana field can
be described only by two-component complex spinors, while the Dirac field
needs four-component complex spinors. The former has only half as many
degrees of freedom as the latter. The situation is analogous to the neutral
π and K mesons: the π0, which is its own antiparticle, can be represented
by a real scalar field, while it is necessary to have a complex scalar field to

distinguish K0 from K
0
.

2 M.K.Moe, Neutrino 94, Nucl. Phys. (Proc. Suppl.) B38 (1995)
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(ii) For different reasons, both the Majorana and the Weyl fields are two-
component spinors. For the Majorana particle, because it is self-conjugate;
for the Weyl particle, which is distinct from its antiparticle, because it is
massless.

12.1.3 Lepton Mixing

In any case, whether of the Dirac type or of the Majorana type, massless neu-
trinos of different families do not mix up, contrary to quarks. If the neutrinos
are massless, i.e. degenerate in mass, the leptonic flavors are not mixed. All
states with degenerate masses are physically equivalent and are the eigen-
states of their common mass operator. This implies the absence of nondiag-
onal charged currents like νeγλ(1− γ5)µ (symbolically written as νeµ). The
six nondiagonal charged currents νeµ , νeτ , νµe , νµτ , ντ e , and ντµ do not
exist, there remain only three diagonal currents νee , νµµ , and ντ τ that sep-
arately conserve their respective leptonic numbers Le, Lµ, Lτ . Consequently,
all leptonic flavor-changing reactions like νµ + n → e− + p , µ± → e± + γ,
etc. (Problem 12.1) are forbidden, whereas hadronic flavor-changing reac-

tions, like D → K + e+ + νe, B → D
∗

+ ρ, and K± → π± + π0 + γ coming
respectively from c → s, b → c, and s → (u, c) → d are allowed and
observed. The latter mode, although rare because of higher-order effects
(penguin diagrams, as in Chap. 11), nevertheless exists.

In the standard model, neutrinos are assumed massless simply because a
firm proof of nonzero lower bounds of their masses is still lacking, the averages
of terrestrial (noncosmic) direct measurements give only their upper bounds
m(νe) < 15 eV , m(νµ) < 170 KeV , m(ντ) < 19.3 MeV.

Nevertheless, the two hypotheses of the GSW standard model mentioned
above demand close scrutiny for many reasons: first, the neutrino helicity is
measured with large errors (at 10% of accuracy at best); second, it seems im-
possible to demonstrate experimentally that the neutrino mass is identically
zero. Moreover, the masslessness of fermions has no deep theoretical founda-
tion, in contrast to the massless photon demanded by local gauge invariance.
If the neutrinos turn out to be massive, then like the three quark families, the
three lepton families could get mixed up, and the presumably small neutrino
masses could be indirectly revealed by the oscillation phenomenon analo-
gous to the neutral K-meson oscillations considered in the previous chapter.
The mixing of massive neutrinos may follow one of two different scenarios.
The first, identical to that for quarks, involves Dirac neutrinos which acquire
masses through the usual Higgs mechanism. The second involves Majorana
neutrinos whose masses are generated only in models beyond the standard
model.

The existence and the size of the neutrino masses are of essential impor-
tance in particle physics and astrophysics. In particular, given the enormous
abundance of the neutrinos in the universe, solutions to the problems of dark
matter, the missing mass, and the expansion rate of the universe will depend
crucially on whether the neutrinos are massive or not.
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Through their oscillations, massive neutrinos could explain the solar neu-
trino deficit observed continuously for the last thirty years in the Homestake
mines (USA) and actively investigated in different underground experiments:
GALLEX (Italy), Kamiokande (Japan), SNO (Canada), and SAGE (Russia).
The solar neutrino deficit may be briefly described as follows. The νe flux –
produced inside the sun by thermonuclear reactions and measured in these
experiments – is lower than predicted by sophisticated calculations within
the standard solar model. The νe loss, if it is true, could be attributed to
its conversion into νµ (and/or ντ ) through oscillations due to their nonzero
masses.

12.2 Oscillations in the Vacuum

The quantum oscillation phenomenon occurs when a particle produced by a
reaction is not identically the same as the particle that subsequently prop-
agates and decays. The best-known example is the neutral K mesons con-

sidered previously. The system K0,K
0

produced by strong interactions are
distinct from the set KL, KS which are governed by weak interactions. The K0

and K
0

are distinguished by their associated production (Chap. 11); whereas
the KL, KS, each with a distinctive mass, are characterized by their decay
modes. In this context, let us call the former the eigenstates of the strong in-
teraction and the latter, the eigenstates of the weak interaction. The neutral
K system oscillates, as we know, since there exists a transition connecting

the strong interaction eigenstates K0,K
0

to the weak eigenstates KL, KS.
Following the example of KL and KS defined as a combination of K0

and K
0

through (11.3), let us introduce two mass eigenstates ν1 and ν2 (of
masses m1 and m2) such that we can imagine the physical weakly interacting
eigenstates νe and νµ as linear combinations of ν1 and ν2:

(
νe

νµ

)
≡ U(θ)

(
ν1

ν2

)
≡
(

cos θ sin θ
− sin θ cos θ

)(
ν1

ν2

)
. (12.1)

We can pursue the analogy with the quark sector. We recall that the three
left-handed quark doublets in Table 9.5 [thoses defined by (9.176) and (9.177)]
can also be written as:

(
u′′

d

)

L

,

(
c′′

s

)

L

,

(
t′′

b

)

L

, where




u′′

c′′

t′′


 =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




†


u
c
t




In the same way that the weak interaction eigenstates u′′, c′′, t′′ are linear
combinations of the mass eigenstates u, c, t of masses mu, mc, mt via the
V †

CKM mixing matrix, the weakly interacting neutrino eigenstates νe, νµ, ντ

– analogous to u′′, c′′, t′′ – are linear combinations of ν1, ν2, ν3, the neutrino
mass eigenstates of masses m1, m2, m3.
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The lepton mixing is realized by a 3× 3 unitary matrix Vlep:

(
νe

e−

)

L

,

(
νµ

µ−

)

L

,

(
ντ

τ−

)

L

where



νe

νµ

ντ


 = Vlep



ν1

ν2

ν3




The idea of neutrino oscillations was put forth for the first time by Pon-
tecorvo, and the mixing (1) was suggested by Maki, Nakagawa, and Sakata
even before its analog in the hadronic sector was proposed by Cabibbo. Like
the VCKM quark-mixing matrix, the Vlep can only be determined by exper-
iment. In the present state of our knowledge, the standard model does not
pretend to predict either the masses of the fermions or their mixings. The
determination of these parameters is one of the most fascinating problems
and is actively investigated in particle physics. Observations of neutrino
oscillations seem to be the best (maybe unique) method to measure their
eventual nonzero tiny masses and Vlep. To illustrate the phenomenon, let us
only consider the two families νe and νµ using the submatrix U(θ) of Vlep.
This simplification avoids complications of a 3× 3 matrix without losing any
physical understanding.

First, we show that when the muon-neutrino νµ propagates, it oscillates
between νµ and νe because of the mass difference, m1 6= m2. Then νµ is

partially converted into νe, just as K0 becomes partially K
0
. Indeed, the

evolution of the mass eigenstates ν1(t), ν2(t) at the time t > 0 is given by

ν1(t) = ν1(0)e−iE1t , ν2(t) = ν2(0)e−iE2t , (12.2)

where E2
j = |pj |2 + m2

j . For relativistic neutrinos, which is always the case

since mj � |pj|, we have |p1| = |p2| = |p| ≈ E and Ej ≈ E + m2
j/2E.

Putting (2) into (1) we get

νµ(t) = [e−iE1t sin2 θ + e−iE2 t cos2 θ]νµ(0) + cos θ sin θ[e−iE2t − e−iE1t]νe(0) ,

νe(t) = [e−iE1t cos2 θ + e−iE2 t sin2 θ]νe(0) + cos θ sin θ[e−iE2 t − e−iE1t]νµ(0) .

(12.3)

The probability for a muon-neutrino νµ produced at t = 0 remains the same
particle νµ at t > 0 is then given by

P (νµ → νµ, t) ≡ | 〈νµ(t) |νµ(0) 〉 |2

= 1− 1

2
sin2 2θ +

1

2
sin2 2θ cos

(4m2
21

2E
t

)

= 1− sin2 2θ sin2

(4m2
21

4E
t

)
= P (νe→ νe, t) , (12.4)

where 4m2
21 ≡ m2

2 −m2
1. The probability for νµ to be converted into νe at

t > 0 is then

P (νµ → νe, t) = sin2 2θ sin2

(4m2
21

4E
t

)
= P (νe→ νµ, t) . (12.5)
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Because of their presumed tiny masses, neutrinos are ultra-relativistic. The
distance they travel from their production source to a detector is L = t (c = 1
in natural units), such that if L is much larger than 2E/|4m2

21|, the rapidly
fluctuating cosine term in (4) vanishes on the average, and the transitions
νµ → νµ, νµ → νe become constant in space L and time t. The oscillations
average to zero.

The conditions for oscillations to appear are: both θ and 4m2
21 have

nonzero values, and the traveling distance L of the neutrino must not differ
too much from the oscillation length Losc defined by

Losc ≡
4πE

|4m2
21|

= 2.48× E/(MeV)

|4m2
21|/(eV)2

m . (12.6)

If L � Losc, cos(4m2
21t/2E) = cos(2πL/Losc) is zero on the average and

oscillations cannot be observed. In this case, the sine term in (4) and (5)
i.e. sin2

(
4m2

21t/4E
)

= sin2(πL/Losc) can be effectively replaced with 1/2.
When 4m2

21 is expressed in (eV)2, E in MeV, and L in meters, (4) and
(5) are written numerically as

P (νµ → νµ, t) = 1− sin2 2θ sin2

(
1.274m2

21L

E

)
,

P (νµ → νe, t) = sin2 2θ sin2

(
1.274m2

21L

E

)
. (12.7)

These equations tell us that oscillations could be observed in many different
experiments, provided that |4m2

21| belongs to the ranges given in Table 12.1.
In turn this Table shows that explorations of several neutrino sources are
necessary to cover the completely unknown domain of |4m2

21|.

Table 12.1. Typical ranges of parameters in neutrino oscillations

Source Energy E (MeV) Distance L (m) |4m2
21| (eV)2

Reactor 1− 10 10 − 100 1− 10−2

Accelerator 103 − 105 102 − 103 103 − 1

Atmosphere 102 − 103 104 − 107 10−1 − 10−5

Solar core 10−1 − 10 1011 10−10 − 10−12

The neutrino transmutations are usually plotted in the plane x = sin2 2θ,
y = |4m2

21| (in units of eV2) where the allowed (forbidden) regions are
exhibited. The data are illustrated in Fig. 12.2 in which the point (x =
0, y = 0) is not definitely excluded for the time being. The very difficult
experiments to observe neutrino oscillations are actively pursued in America,
Asia, and Europe.
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The question about the neutrino mass – either by direct study of the end
point of the electron energy spectrum measured in 3H→3 He+e−+νe (tritium
β-decay) or by observation of neutrino oscillations in terrestrial experiments
– still has no definite answer at present.

Fig. 12.2. Limits on νe ↔ νµ in the sin2 2θ, |∆m2
21|/(eV

2) plane from Chooz
reactor neutrinos, compared with experiments from Bugey, Gösgen, Krasnoyarsk
where the excluded regions are above and to the right of the contours. The allowed
area from Kamiokande with atmospheric neutrinos suggests that oscillations might
involve tau neutrinos. Courtesy CERN Courier, February 1998

12.3 Oscillations in Matter

In most realistic situations, the neutrinos move not in the vacuum but in
matter. For instance, the solar neutrino is produced in the central part of
the sun and moves to its surface through the solar material medium. We
must therefore consider the effects of the surroundings on the particle oscil-
lations. When a neutrino propagates in a medium filled with other particles,
its interaction with matter modifies its oscillations. The reason is that the
interaction of the neutrino with matter would change its effective mass, just
as the well-known example of electromagnetic waves. Massless in vacuum,
the photon passes through a medium with a velocity smaller than c, as it
gets an effective mass by interacting with matter. In conventional optics, the
phenomenon is described by an index of refraction n 6= 1 of the medium.

Similarly, as a neutrino goes through matter, its effective mass is mod-
ified by its interaction with other particles in the medium. As we will see,
since the νe interacts with the solar matter differently than νµ or ντ , the νe

oscillations in the sun are different from those of the other νµ or ντ . This
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difference causes significant changes in the masses and mixing angles of neu-
trinos and could give rise to dramatic resonance oscillations, known as the
Mikheyev–Smirnov–Wolfenstein (MSW) effect.

12.3.1 Index of Refraction, Effective Mass

When a neutrino propagates in matter, its interaction with other particles
results in either coherent or incoherent transitions. In a coherent process,
the medium remains unchanged, allowing scattered and unscattered neutrino
wave functions to interfere. The initial and final states in a scattering in the
medium must remain exactly the same, requiring forward elastic scattering

of neutrinos by particles in the medium. As in conventional optics, these co-
herent elastic forward scatterings are responsible for optical phenomena and
provide effective masses to the neutrinos, as first pointed out by Wolfenstein.
On the other hand, any change in the states would produce incoherent waves
which cannot give rise to optical phenomena. The index of refraction n in
neutrino optics may be derived from an effective potential V that the neu-
trino ‘feels’ when it travels in and interacts with the medium. The V gives
masses to the neutrinos and changes their mixing angles. Our purpose is to
compute V and show how the masses of the neutrinos and their mixings in
the vacuum are modified by V.
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Fig. 12.3. (a) Neutrino–proton and neutrino–neutron forward elastic scatterings
by Z0 exchange; (b) neutrino–electron forward elastic scatterings by Z0 exchange

As a specific example, let us consider a neutrino propagating inside the
sun, its medium is composed of protons, neutrons, and electrons. We are
only interested in elastic scattering of the neutrinos with p , n, and e− for the
reason mentioned above. The Z0-exchange elastic scatterings of νe, νµ, ντ are
identical since there is no difference between the three neutrino families in
their interactions with matter by neutral currents (Fig. 12.3). On the other
hand, only the νe can have an elastic scattering with e− by the W-exchange
charged current νe + e− → e− + νe (Fig. 12.4). In normal matter like the
sun, there are neither muons nor τ leptons, therefore the W-exchange elastic
reactions νµ+µ− → µ−+νµ , ντ+τ− → τ−+ντ do not arise for lack of targets



12.3 Oscillations in Matter 417

µ−, τ−. Inelastic scattering by charged currents νµ,τ + e− → (µ−, τ−) + νe

can occur; however these incoherent reactions cannot give rise to optical
phenomena responsible for oscillations in matter.

The effective potential is then the sum of VN (from Z0 exchange) and
VC (from W exchange). We first compute VC; its important role will become
clear later when we discuss the MSW effect. VC is derived from an effective
Hamiltonian HC(x) built up by charged currents acting in the medium:

VC ≡
〈
νe(k)

∣∣∣∣
∫

d3xHC(x)

∣∣∣∣ νe(k)

〉
,

HC(x) = −LC(x) = −GF√
2

∫
d3p f(E, T )

〈
e(p)

∣∣∣ Jλ(x)J†
λ(x)

∣∣∣ e(p)
〉
,

Jλ(x) = ψe(x)γ
λ(1− γ5)ψνe

(x) ≡ ψe(x)Oλψνe
(x) . (12.8)

The function f(E, T ) in (8) is the energy distribution of electrons in the
medium at temperature T , normalized to 1, i.e.

∫
d3p f(E, T ) = 1. By

Fierz’s rearrangement (Appendix):

ψe(x)Oλψνe
(x) ψνe

(x)Oλψe(x) = −ψνe
(x)Oλψνe

(x) ψe(x)Oλψe(x) ,

HC(x) =
GF√

2
ψνe

(x)Oλψνe
(x)

∫
d3p f(E, T )

〈
e(p)

∣∣ψe(x)Oλψe(x)
∣∣ e(p)

〉
.

With the standard normalization of the electron state

ψe(x) =

√
1

L3

√
1

2E
u(p)e−ipx ,

∫

L3

d3x ψ†
e(x)ψe(x) = 1 ,

where L3 is the volume of the box in which the electron state is normalized
in the medium, the continuum limit (L→∞) is obtained by the replacement
1/L3 → d3p/(2π)3. We have

〈
e−(p)

∣∣ψe(x)Oλψe(x)
∣∣ e−(p)

〉
=

1

2E〈L3〉u(p)Oλu(p)

=
1

2

Tr{(m+ 6p)Oλ}
2E〈L3〉 = Ne

pλ

E
. (12.9)

The factor 1
2

in the above equation takes care of the spin average of the
initial target electron, and Ne ≡ 1/〈L3〉 is the number of electrons per unit
volume (electron number density), which has the dimension of (mass)3. Since

γλ

∫
d3p f(E, T )

pλ

E
=

∫
d3p f(E, T )

[
γ0 − γ · p

E

]
= γ0 ,

one has for left-handed neutrino ψL(x):

HC =
GFNe√

2
ψνe

(x)γ0(1− γ5)ψνe
(x) =

√
2 GF Ne ψ

†
L(x)ψL(x) .
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With
∫

d3x
〈
νe

∣∣∣ψ†
L(x)ψL(x)

∣∣∣ νe

〉
= 1, then using (8), we get

VC =
√

2 GFNe . (12.10)

The potential V has the dimension of mass, as it should. As we will see
later in (12.18), VC is proportional to the amplitudeMC(Eν , q

2 = 0) of the
forward elastic scattering by charged currents νe(k)+e−(p)→ νe(k)+e−(p)
(Fig. 12.4) for which the momentum transfer q2 is zero.
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Fig. 12.4. νe–e
− forward elastic scatterings by W boson exchange

By the same method, it is a straightforward task to compute VN, the
potential due to Z0-exchange contributions. The forward elastic amplitude
by neutral currents of Fig. 12.3b is denoted as MN(Eν , q

2 = 0). The corre-
sponding effective Hamiltonian HN(x) is

HN(x) =
−GF√

2
ψνe

(x)Oλψνe
(x)

∫
d3p f(E, T )

〈
e(p)

∣∣ψe(x)Γλψe(x)
∣∣ e(p)

〉
,

Γλ = γλ(ge
V − γ5g

e
A) , ge

V = −1
2

+ 2 sin2 θW , ge
A = −1

2
.

The relative sign between the charged current and neutral current amplitudes,
MC and MN, must be negative, because of the anticommutation relations
of the fermionic creation and destruction operators (Sect. 12.4). Since VC

and VN are proportional to MC and MN respectively, this relative sign is
reflected in VC and VN. Taking this minus sign into account, the contribution
of the target electron to VN is found to be

Ve
N =

−GF√
2

(1− 4 sin2 θW)Ne . (12.11)

For a more general case, we get

VN =
√

2 GF

∑

f

{
(T f

3 )L − 2 sin2 θWQ
f
}
Nf .

In the case of the sun, the sum over f corresponds to the three targets: p, n,
and e−. With (T p

3 )L = −(T e
3 )L = +1/2 , Qp = −Qe = +1, and Np = Ne
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for an electrically neutral medium, the contributions to VN from protons and
electrons exactly cancel out each other, only those of neutrons remain. With
(T n

3 )L = −1/2 , Qn = 0 and Nn is the neutron number density, we get

VN = −(GF/
√

2)Nn . (12.12)

It is instructive to have some numerical values of the number density N for
typical media. Since 5.98 × 1023 protons weigh one gram, a ground rock
with a density of about 4g/cm3 has Ne = Np ≈ Nn ≈ (4

2
) × 6 × 1023/cm3.

The solar core with a density of about 100g/cm3 has Ne = Np ≈ 3Nn ≈
75× 6× 1023/cm3 (we have neglected the electron mass). Supernova density
is about 1014g/cm3. Also GF/cm

3 ≈ 8.96× 10−38 eV = 4.54× 10−33/cm.
One consequence of the potential V felt by the neutrino traveling in

matter is the modification of the relation E2
ν = |p|2 +m2

ν in the vacuum. In
matter it reads E2

ν = |p|2 +m2
ν + 2|p|V for |V| � |p| . We may interpret

this modification as an effective mass acquired by the neutrino

m2
ν −→ m2

ν + 2|p|V . (12.13)

The index of refraction in the vacuum is

n =
|p|
Eν
≈ 1− m2

ν

2E2
ν

+ · · · . (12.14)

The propagation of a neutrino in the vacuum has a phase

exp[i(n− 1)Eνt] = exp
(
−im2

νt/2Eν

)
,

which is responsible for oscillations in the vacuum, and (4) is recovered. In a
material medium composed of particles – collectively denoted by P – which
interact with neutrinos, similar to the conventional photon-optics, the index
of refraction is given by

n ≈ 1− m2
ν

2E2
ν

+
NP

4mE2
ν

M(Eν , q
2 = 0) , (12.15)

where M(Eν, q
2 = 0) is the dimensionless forward elastic amplitude of the

neutrino scattered by the particle P, Eν is the neutrino energy in the rest
frame of P (of mass m), and NP is the number density of P in the medium.

The well-known optical theorem relates the imaginary part of the for-
ward elastic amplitudeM(Eν, q

2 = 0) to the total cross-section of the neu-
trino scattered by P, σtot(Eν). According to the theorem [see (15.94)], we
have Im M(Eν, q

2 = 0) = 2m|p| σtot(Eν) ≈ 2mEν σtot(Eν). Note that our
definition of amplitudesM coincides with the amplitudes that enter the gen-
eral formulas of differential cross-sections given in (4.59) and (4.64). The real
and imaginary parts of the index of refraction are

Re (n) ≈ 1− m2
ν

2E2
ν

+
NP

4mE2
ν

ReM(Eν, q
2 = 0) ,

Im (n) ≈ NP

4mE2
ν

ImM(Eν, q
2 = 0) =

NP

2Eν
σtot =

1

2 l Eν
, (12.16)



420 12 The Neutrinos

where l is the mean free path of the neutrino in the medium. On the other
hand, from (13), we also have

Re (n) ≈ 1− m2
ν + 2|p|V

2E2
ν

= 1− m2
ν

2E2
ν

− V
Eν

. (12.17)

Matching with (16), we get

ReM(Eν , q
2 = 0) =

−4mEν

NP

V . (12.18)

If the target P is an electron, V = VC + Ve
N, where VC and Ve

N are given by
(10) and (11). Putting m = me in the above equation, we obtain the real part
of the forward elastic scattering amplitude of νe by an electron. It is easy to
check, by a direct calculation [see (48) below], that Re Me(Eν, q

2 = 0) as
given by the Z0 exchange of Fig. 12.3b and the W exchange of Fig. 12.4 is

ReMe(Eν, q
2 = 0) = −2

√
2 GF me Eν

(
1 + 4 sin2 θW

)
(12.19)

and we recover (18).

For the antineutrino, the signs of the forward scattering amplitudes are
reversed. Hence in the same medium, the potentials VC and VN felt by the
antineutrinos have the opposite sign to the potentials (10) and (12) felt by
neutrinos. Once V is computed, the neutrino effective masses in various
media characterized by NP can be estimated. It is important to note that
the oscillation length L̃osc in matter – related to V by L̃osc ∼ 2π/V using (6)
and (13) – is proportional to G−1

F , whereas the mean free path l depends on

σ−1
tot ∼ G−2

F . Therefore L̃osc is many orders of magnitude smaller than l, so
that oscillations in matter are in principle accessible.

12.3.2 The MSW Effect

For a quantitative treatment, let us again stick to the simplest case with two
flavors νe and νµ and let us first recapitulate the 2 × 2 matrix formalism
of oscillations in the vacuum suitable for generalization to material medium.
The evolution equation of the mass eigenstates ν1 and ν2 propagating in the
vacuum can be written as

i
d

dt

(
ν1(t)

ν2(t)

)
= H

(
ν1(t)

ν2(t)

)
, (12.20)

where H is diagonal in this basis:

H =

(
E1 0
0 E2

)
= Eν +

(
m2

1/2Eν 0
0 m2

2/2Eν

)
. (12.21)
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Using (1) for the mixing matrix U(θ) which connects the mass eigenstates
ν1, ν2 to the flavor physical states νe, νµ, we rewrite the above equation as

i
d

dt

(
νe(t)

νµ(t)

)
= H ′

(
νe(t)

νµ(t)

)
, where ∆ ≡ ∆m2

21 = m2
2 −m2

1 ,

H ′ = U(θ)HU †(θ) = Eν +
m2

1 +m2
2

4Eν
+

∆

4Eν

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
.(12.22)

In terms of the matrix elements H ′
ij, we write θ, the mixing angle in the

vacuum, in the following form, which will be useful later:

tan 2 θ =
2H ′

21

H ′
22 −H ′

11

. (12.23)

We consider now the problem of neutrinos traveling through a material
medium. The evolution equation for νe, νµ still keeps the same matrix struc-

ture (22), with H
′

replaced by H̃ ,

H̃ = Eν +
m2

1 +m2
2

4Eν
+ VN +

(
− ∆

4Eν
cos 2θ + VC

∆
4Eν

sin 2θ

∆
4Eν

sin 2θ ∆
4Eν

cos 2θ

)
. (12.24)

The potential VN acts on both flavor neutrinos νe and νµ. It contributes
equally to the common effective mass of νe and νµ through (13). On the
other hand, the potential VC acts only on νe and not on νµ. Therefore, in

the matrix H̃ , VN is diagonal whereas VC appears only in H̃11.
The mixing angle θ in the vacuum now becomes Φ, the mixing angle in

matter, using the general formula (23):

tan 2Φ ≡ 2H̃21

H̃22− H̃11

=
∆ sin2θ

AR −AC

,

or sin2 2Φ =
tan2 2Φ

1 + tan2 2Φ
=

∆2 sin2 2θ

(AC − AR)2 + ∆2 sin2 2θ
, (12.25)

where AR = ∆ cos 2θ , AC = 2EνVC = 2
√

2GFNeEν . (12.26)

When Ne = 0, both VC and AC vanish and Φ is equal to θ as it should be.
The crucial point of (25), first noticed by Mikheyev and Smirnov, is

the resonance behavior which dramatically changes the mixing angle Φ and
reveals unexpected features of the oscillation phenomenon. The angle Φ
shown by Fig. 12.5 as a function of AC is clearly a resonance, peaking at the
pole AC = AR with a width ∆2 sin2 2θ.

The sign of AC or VC is essential for a resonance behavior to appear.
With neutrinos, AR and AC have the same signs, and the denominator of (25)
could vanish. However, with antineutrinos in the same electron rich medium
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Fig. 12.5. The mixing angle Φ in matter as a function of AC

+AC becomes −AC and the resonance behavior is absent. If AC ≈ AR, then
(25) shows that even starting with a very small θ ≈ 0 in the vacuum, the
mixing angle Φ could become ≈ π/4 in matter. In other words, as soon as
it is produced, the neutrino νe, by its interaction with electrons in matter,
becomes equally split into νe and νµ in the resonance region characterized by
AC ≈ AR. We notice the important role of AC in the MSW effect.

To go further, let us write down the eigenvalues E1,2 of H̃ to understand
the exact meaning of this maximum mixing. They are

E1,2 = |p|+ (µ1,2)
2

2|p| + . . . ,

(µ1)
2 =

1

2

[
m2

1 +m2
2 +AC + 2AN −

√
(AR −AC)2 + (∆ sin 2θ)2

]
,

(µ2)
2 =

1

2

[
m2

1 +m2
2 +AC + 2AN +

√
(AR −AC)2 + (∆ sin 2θ)2

]
,(12.27)

where AN = 2EνVN = −
√

2GFNnEν. The above formula clearly indicates
that even if the neutrinos are massless in the vacuum, i.e. m1,2 = 0, they
can acquire effective masses µ1,2 6= 0 in matter. In the vacuum the relevant

quantities are ∆ and θ, in matter they become ∆̃ and Φ, where ∆̃ = (µ2)
2−

(µ1)
2 =

√
(AR −AC)2 + (∆ sin 2θ)2, and Φ is given by (25). To illustrate the

surprising behavior of neutrino oscillations in matter, let us assume that θ is
extremely small, such that in the vacuum, by (1) the light mass eigenstate
ν1 is nearly νe, and the heavy mass eigenstate ν2 is almost νµ.

In the other extreme condition of matter, we assume that AC � AR,
from (25) the mixing angle Φ ≈ π/2. Now θ is replaced by Φ, and ν1,2 by ν̃1,2

(the mass eigenstates in matter). Since νe = ν̃1 cosΦ + ν̃2 sin Φ ≈ ν̃2, we
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note that νe, produced in the region where AC � AR, is nearly a ν̃2 which has
an effective mass µ2 greater than the effective mass µ1 of νµ. The neutrino
νe which is lighter than the neutrino νµ in the vacuum becomes heavier than
νµ in an electron-rich medium.

In matter where AC � AR, νe starts to be a ν̃2, it propagates along
the path of the latter (if the adiabatic condition discussed in the following
is satisfied). There is not much transition (since the corresponding oscilla-

tion length in this region L̃osc ∼ 2π/VC is very short) until it arrives in the
resonance region (AC ∼ AR) for which Φ ≈ π/4, the oscillations are en-
hanced, and ν̃2 is composed of νe and νµ in equal parts. At the solar surface
(i.e. the vacuum), AC gradually decreases, Φ tends towards θ, ν̃2 gradually
becomes νµ cos θ + νe sin θ, and finally comes out nearly as a νµ in the vac-
uum. The evolution of neutrinos in matter, expressed by (27) and illustrated
by Fig. 12.6, is called a level crossing : Produced as a νe in an electron-dense
solar core, the traveling neutrino becomes almost a νµ when it reaches the
solar surface. The depletion is spectacular indeed.

Fig. 12.6. Adiabatic MSW effect: Following the ν̃2 path, a νe produced in the
solar core becomes a νµ at the solar surface

12.3.3 Adiabaticity

So far we have assumed that the solar density N is homogeneous everywhere.
It is constant throughout the region covered by the traveling neutrinos. This
is actually not the case of the sun, and we must accordingly take into account
the variations of N(r) = N(t). We have taken r = ct = t appropriate for
relativistic neutrinos, r being the distance from the center of the sun. The
mixing angle Φ and the effective masses µ1,2 – given respectively by (25)
and (27) – are no longer constant in r , hence in t . The mixing angle in
matter, always expressed through its analytic form (25), is now a function
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of t since AC(t) depends on it via N(t). First we write ν̃1(t) and ν̃2(t), the
mass eigenstates in matter, as a mixing of νe and νµ with the angle Φ(t),

(
ν̃1(t)

ν̃2(t)

)
=

(
cos Φ(t) − sin Φ(t)
sin Φ(t) cosΦ(t)

)(
νe

νµ

)
.

In the evolution equation (24) of νe and νµ, we keep the t dependence of
VC(t). After rewriting νe and νµ in terms of ν̃1 and ν̃2, we get

i
d

dt

(
ν̃1

ν̃2

)
=

1

2Eν

(
µ2

1(t) −iδµ2(t)
+iδµ2(t) µ2

2(t)

) (
ν̃1

ν̃2

)
, (12.28)

where

δµ2(t) = 2Eν
dΦ(t)

dt
=

Eν∆ sin 2θ

[µ2
2(t)− µ2

1(t)]
2

∣∣∣∣
1

Ne

dNe

dt

∣∣∣∣AC(t) . (12.29)

The oscillations depend now on an additional parameter denoted by h(t):

h(t) ≡
∣∣∣∣

1

Ne

dNe

dt

∣∣∣∣ .

In general, (28) is solved by numerical methods. We remark that if Ne(t)
is constant, δµ2(t) vanishes, and ν̃1,2 are stationary states. For a varying
density N(r), we can only define the stationary states at a given point r .
Nevertheless, if (28) is almost diagonal, i.e. if δµ2(t) � [µ2

2(t) − µ2
1(t)] (a

relation referred to as the adiabatic condition), then as long as this condition
is satisfied, the matter eigenstates ν̃1,2 move in the medium without under-
going transitions between themselves, with the relative admixture of νe, νµ

determined according to the value of Ne(r) at a given point r. The adiabatic
condition can also be rewritten as

∆ sin 2θ

[µ2
2(t)− µ2

1(t)]
2
Eν AC(t) h(t)� µ2

2(t)− µ2
1(t) . (12.30)

In the resonance region where AC = AR ≡ ∆ cos 2θ, we note from (27) that
the right-hand side of the above equation, i.e. [µ2

2 − µ2
1] reaches its mini-

mum value which is equal to ∆ sin2θ, whereas the left-hand side is maxi-
mum (because [µ2

2 − µ2
1] is now in the denominator). Provided that h(t) is

monotonously changing (this is the case of the sun, see below), if (30) is
satisfied at the resonance, it is satisfied everywhere. At the resonance, the
adiabatic condition (30) becomes

∆ sin2 2θ

Eν cos 2θ
� hRes , hRes =

∣∣∣∣
1

Ne

dNe

dt

∣∣∣∣
Res

, (12.31)
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where hRes is the value of h(t) at the resonance. Physically, the adiabatic
condition corresponds to the case of many oscillations that take place in the
resonance region. This region is characterized by the resonance oscillation
length L̃Res = Losc/ sin 2θ, where Losc is given by (6). For the standard solar
density, Ne(r) = Ne(0)e−ar/R� , where a ' 10.54 and R� ' 7 × 108m is the
radius of the sun, we get hRes ' 3× 10−15 eV = 1.52× 10−10/cm. When ∆
is expressed in (eV)2 and Eν in MeV, the adiabatic condition (31) is

sin2 2θ(∆/eV2)

cos 2θ(Eν/MeV)
� 3× 10−9 .

If the mixing angle in the vacuum θ satisfies the above inequality, i.e. if (28)
is almost diagonal, then for a given Eν and ∆, the r dependence of N(r) is
harmless and the level crossing can be fully achieved. Let us explain in detail
the MSW effect in matter satisfying the adiabatic condition. Similar to the
vacuum case (3), the amplitude Ã(νe → νe; t) in matter is written as

Ã(νe → νe; t) =
∑

a,b

〈νe(t) |ν̃b(t) 〉 〈ν̃b(t) |ν̃b(tR) 〉

× 〈ν̃b(tR) |ν̃a(tR) 〉 〈ν̃a(tR) |ν̃a(t0) 〉 〈ν̃a(t0) |νe(t0) 〉 , (12.32)

where t0 and tR are the traveling time (or distance) from the solar center to
the νe production region and to the resonance localization respectively, and
reading from right to left, the first term is

〈ν̃a(t0) |νe(t0) 〉 = U∗
ea(Φ) ,

where U is the mixing matrix in matter with the angle Φ, similar to (1)
in the vacuum. To simplify, we consider only the two-family case (a, b =
1, 2). Under the adiabatic condition, the stationary mass-eigenstates ν̃1 , ν̃2

propagate from the core to the surface without mixing, i.e. ν̃1 remains ν̃1,
and ν̃2 remains ν̃2 in the whole distance covered. Then the three factors in
the middle of (32) are simply

〈ν̃b(t) |ν̃b(tR) 〉 〈ν̃b(tR) |ν̃a(tR) 〉 〈ν̃a(tR) |ν̃a(t0) 〉

= δab exp[i

∫ t

t0

Ea(t′)dt′] ≡ δab exp[iEa(t)/E] .

Note that Ea(t) is a function of time (or distance) because the effective mass
µa given by (27) changes as it propagates in matter (Fig. 12.6). The factor
〈νe(t) |ν̃b(t) 〉 in the extreme left of the right-hand side of (32) which projects
out νe from ν̃b with the mixing angle θ in the vacuum is

〈νe(t) |ν̃b(t) 〉 = Ueb(θ) .
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The transition probability becomes

P̃ (νe → νe, t) =

∣∣∣∣∣
∑

a=1,2

Uea(θ)U∗
ea(Φ) exp

[−iEa(t)

2E

]∣∣∣∣∣

2

= cos2 θ cos2 Φ + sin2 θ sin2 Φ + 1
2

sin 2θ sin 2Φ cos
δ̃(t)

2E
,

δ̃(t) =

∫ t

t0

dt′[µ2
2(t

′)− µ2
1(t

′)] =

∫ t

t0

dt′
√

[∆ cos2θ −AC(t′)]2 + (∆ sin 2θ)2 .

In practice, the oscillating term that depends on t can be neglected, and the
time average of P̃ (νe → νe, t) is

P̃ (νe → νe) = cos2 θ cos2 Φ + sin2 θ sin2 Φ .

Since Φ depends on AC, P̃ (νe → νe) is a function of the localization where
neutrinos are produced. When they are produced in the region AC � AR,
Φ ≈ 900, we get P̃ (νe → νe) = sin2 θ, so that depending on the value of θ
in the vacuum, we can have any amount of depletion. Figure 12.6 illustrates
the situation. This is in sharp contrast to the vacuum depletion given by (4),
where P (νe → νe) = cos4 θ + sin4 θ = 1− 1

2
sin2 2θ is larger than 1

2
for all θ.

Summary. The nonzero mass of neutrinos is of great importance not only
in particle physics but also in astrophysics and cosmology. If the three neu-
trino families have nondegenerate masses, they could mix together like the
quark families and oscillations would occur. The answer to the question on
the existence of neutrino masses depends mainly on possible observations of
oscillations either in the vacuum or in a material medium. This may be the
only experimental method to measure their vanishingly small masses. To
cover the large spectrum of ∆m2 between 10−12 to 103 eV2 (see Table 12.1),
several sources of neutrino production should be exploited. From the sun
to the particle accelerators and nuclear reactors, each source – with its spe-
cific energy and distance to the detectors – brings an answer appropriate to
each range of values of ∆m2. Finally, the solar neutrino deficit may find its
explanation in the MSW mechanism.

12.4 Neutral Currents by Neutrino Scattering

We recall that weak interactions were historically discovered by processes
involving charged currents, their first manifestation at the beginning of the
century was the β-radioactivity of nuclei for which the neutron disintegra-
tion n → p + e− + νe represents the simplest mode. The amplitude of this
decay is obtained from the product of two charged currents: the hadronic
one Vuduγµ(1 − γ5)d which may be written as a d → u transition between
the quark u , d fields connected by the CKM matrix element Vud, and the
leptonic one eγµ(1−γ5)νe constructed from the e− and νe fields. All charged
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currents share the universal V−A property symbolized by γµ(1−γ5). There
are in all 9 = 3 × 3 hadronic charged currents, only in this specific d → u
transition is flavor conserved.

12.4.1 Neutral Currents, Why Not?

From the beginning of the β-radioactivity period to the formulation of the
standard model (SM) in the 1970s, physicists had always wondered why only
charged currents are involved in weak interactions and not neutral currents,
since a priori there is no deep reason to suppress the latter. Moreover, in
every non-Abelian gauge theory that may underlie weak interactions – the
SM is a prototype – the neutral currents (NC) naturally emerge on an equal
footing with the charged currents (CC). The problem is to demonstrate ex-
perimentally the existence of the neutral currents.

We illustrate the situation by an example. The hadronic charged cur-
rents Vuduγµ(1− γ5)d and Vusuγµ(1− γ5)s are respectively responsible for
the decays π+ → e+ + νe and K+ → µ+ + νµ (Fig. 12.7). If the hadronic
neutral and charged currents have comparable couplings, as they do in the
case of non-Abelian gauge theories, we would expect that Γ(π0 → e+ +e−) ≈
Γ(π+ → e+ + νe) and Γ(K0 → µ+ + µ−) ≈ Γ(K+ → µ+ + νµ). But nothing
of the kind happens for the latter case, the rate Γ(K0

L → µ+ + µ−) is very
suppressed, being ≈ 2.72 × 10−9 Γ(K+ → µ+ + νµ). Another example of
the strongly suppressed strangeness-changing neutral current is the rate of
K+ → π+ + e+ + e−, which is much weaker than the rate of strangeness-
changing charged current involved in K+ → π0 + e+ + νe (Sect. 7.6). Ob-
viously, there must exist a cancelation mechanism that forbids strangeness-

changing neutral current, and at the same time allows strangeness-changing

charged current. As explained in Chap. 9, these two constraints are realized
by the Glashow–Iliopoulos–Maiani (GIM) mechanism, via the unitarity of the
Cabibbo–Kobayashi–Maskawa (CKM) matrix. At the lowest order GF tree-
diagram level, flavors (strangeness, charm, bottom, top) are systematically
conserved in neutral currents but generally not in charged currents.

The absence of K0
L → µ+ +µ− at the tree diagram level is illustrated by

Fig. 12.8b. The amplitudes of all flavor-changing neutral currents (FCNC)
can only come from loop diagrams similar to the penguin loop considered in
Chap. 11 where the gluon is replaced by the photon or the Z0. Compared to
the charged current tree amplitude of order GF, these FCNC loop amplitudes
are of the order of GFαem/π, its computation is similar to (11.94).

But how about π0 → e+ +e−, the flavor-conserving neutral current pro-
cess (Fig. 12.8a) which can occur at the tree level ? Unsuppressed by GIM,
its weak decay rate could be similar to the usual π+ → e+ + νe. The reason
why the existence of neutral currents was not suspected and the π0 → e++e−

mode – a typical manifestation of neutral current – was not actively searched
for, is simply that electromagnetic interactions also govern this decay through
the chain π0 → γ + γ → e+ + e−. This electromagnetic transition dominates
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the weak decay π0 → Z0 → e+ + e− by many orders of magnitude (Prob-
lem 12.4). Therefore π0 → e+ + e−, contaminated by electromagnetic inter-
actions, is not a clean process for proving the existence of neutral currents.
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Fig. 12.7. Decays by charged currents: (a) π+ → e+ + νe ; (b) K+ → µ+ + νµ
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Fig. 12.8. Decays by neutral currents: (a) π0 → e+ +e− flavor-conserving neutral
current is allowed; (b) K0 → µ+ + µ− flavor-changing neutral current is forbidden

From these considerations, we learn that at low energies, electromag-
netic processes always dominate weak neutral current ones. For the latter
to show up, one should consider reactions in which electromagnetic interac-
tions are absent. We come to the crucial role of neutrinos in the discovery of
weak neutral currents which consecrates the standard model. Since neutri-
nos are insensitive to electromagnetic forces, it suffices to observe the absence
of charged leptons in neutrino scatterings to prove the existence of neutral
currents. For example, νe + n → e− + p is due to charged currents but
νe + p → νe + p can only come from neutral currents. More generally, in
the scattering of neutrinos by a target T, if the cross-section σ(ν` + T →
without `− + · · ·) is comparable to σ(ν` + T → with `− + · · ·) , then the
existence of neutral currents is irrefutable. It was precisely how the latter
were discovered at CERN by the Gargamelle collaboration in 1973, ten years
before the neutral current carrier Z0 was found at CERN and SLAC.

12.4.2 Neutrino–Electron Scattering

The scattering of neutrino by electron, a purely leptonic reaction, is difficult
to observe since the cross-section, being proportional to the electron mass, is
small (σ ' 10−42cm2). This experimental difficulty is compensated by clean
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theoretical treatments, since with pointlike leptons, theoretical treatments do
not suffer from uncertainties due to weak form factors inherent to hadrons.
From the neutrino–electron scattering, one can deduce the neutral-current
properties, the Weinberg angle θW, and the W± and Z0 masses.

We consider the following reactions:

νµ + e− → νµ + e− , νµ + e− → νµ + e− , (I)

νe + e− → νe + e− , νe + e− → νe + e− , (II)

νµ + e− → µ− + νe . (III)

The reactions (I) are governed only by neutral currents (NC), in (III) are
involved charged currents (CC), while both NC and CC participate in (II).
The sources of νe are mainly from nuclear reactors, their energies are in the
MeV range, while the νµ, νµ mainly come from the decays of π and K mesons
produced by accelerators. Their energies can reach a few hundred GeV.

We start with the pure NC reaction νµ(k1) + e−(p1)→ νµ(k2) + e−(p2);
the corresponding Feynman diagram is similar to Fig. 12.3b. For non-forward
scattering considered here, k1 6= k2 and p1 6= p2. The kinematics of two-body
→ two-body reactions is conveniently described by the Mandelstam variables

s ≡ (k1 + p1)
2 = (k2 + p2)

2 ,

t ≡ (k1 − k2)
2 = (p2 − p1)

2 ,

u ≡ (k1 − p2)
2 = (k2 − p1)

2 , (12.33)

only two of which are independent since s+ t+ u = Σjm
2
j = 2m2

e + 2m2
ν. In

the following, we take mν = 0 and put me = m.
In the center-of-mass system k1 + p1 = 0 = k2 + p2, and k1 · k2 =

|k1||k2| cos θcm ,
√
s is the total energy of the ingoing (or outgoing) particles,

and |k1| = |k2| = (s − m2)/2
√
s. The momentum transfer is denoted by

qµ = (k1−k2)µ, such that t = q2 = −|k1−k2|2. We also write Q2 = −q2 ≥ 0.
In the laboratory system for which the target electron is at rest, p1 = 0,

we have s = m2 + 2mEν where Eν is the incoming neutrino energy, and
t = −2m(Ee −m) = −2mTe. Ee is the outgoing electron energy. Another
laboratory variable frequently used is y ≡ Te/Eν = −t/(s−m2). The follow-
ing relations may be useful :

k1 · p2 = k2 · p1 = m(m+ Eν − Ee) = mEν(1 − y) = (s+ t−m2)/2 ,

k1 · p1 = k2 · p2 = mEν = (s−m2)/2 , k1 · k2 = −t/2 ,
Q2 = 2mEν y ; 0 ≤ Q2 ≤ (s−m2)2/s ; 0 ≤ y ≤ 1−m2/s .(12.34)

The two-body→ two-body cross-section always depends on two independent
variables that can be chosen as s and t, or Eν and y in the laboratory frame,
or
√
s and θcm in the center-of-mass system. Using the general formulas
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(4.59) and (4.62), we have

dσ

d cos θcm
=

1

32π s

(
1
2

∑

spin

|MZ|2
)
,

dσ

dQ2
=

1

16π (s−m2)2

(
1
2

∑

spin

|MZ|2
)
. (12.35)

The symbol 1
2

∑
spin refers to the averaging over the incoming electron spins,

since it is unnecessary to do spin averaging for the incoming left-handed
neutrino which has only one helicity. The amplitude of νµ(k1) + e−(p1) →
νµ(k2) + e−(p2) obtained from the Feynman rules is

MZ = i

( −ig

2
√

2 cos θW

)2

u(k2)γ
µ(1 − γ5)u(k1)

× −i(gµν − qµqν/M
2
Z)

q2 −M2
Z

u(p2)γ
ν (ge

V − ge
Aγ5)u(p1)

ge
V = − 1

2
+ 2 sin2 θW ; ge

A = −1
2
. (12.36)

The product qµ u(k2)γ
µ(1− γ5)u(k1) vanishes with massless neutrinos, leav-

ing only the gµν to the Z0 propagator. With GF/
√

2 = g2/8M2
Z cos2 θW,

MZ =
GF√

2

u(k2)γ
µ(1− γ5)u(k1) u(p2)γµ(ge

V − ge
Aγ5)u(p1)

(1 +Q2/M2
Z)

, (12.37)

so that

1
2

∑

spin

|MZ|2 =
G2

F

2(1 +Q2/M2
Z)2

(
1
2
Aµρ B

µρ
)
,

Aµρ =
∑

spin

u(p2)γµ(ge
V − ge

Aγ5)u(p1) u(p1)γρ(ge
V − ge

Aγ5)u(p2)

= Tr
[
6p2γµ 6p1γρ[(ge

V)2 + (ge
A)2 − 2ge

Vg
e
Aγ5] +m2[(ge

V)2 − (ge
A)2]γµγρ

]
,

Bµρ =
∑

spin

u(k2)γ
µ(1− γ5)u(k1) u(k1)γ

ρ(1− γ5)u(k2)

= 2 Tr [6k2γ
µ 6k1γ

ρ(1− γ5)] . (12.38)

Using the relation

Tr[γλγµγσγρ(a− bγ5)]×Tr[γαγµγβγρ(c− dγ5)]

= 32 [ac(δλ
αδ

σ
β + δσ

αδ
λ
β) + bd(δλ

αδ
σ
β − δσ

αδ
λ
β )] , (12.39)

we obtain

Aµρ B
µρ = 64

[
(ge

V + ge
A)2(k1 · p1)(k2 · p2)

+(ge
V − ge

A)2(k1 · p2)(k2 · p1) + [(ge
A)2 − (ge

V)2]m2(k1 · k2)
]
.(12.40)
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Putting (40) into (34), (35), and (38), we have

dσ(νµ + e− → νµ + e−)

dQ2
=

G2
F

4π(s−m2)2
1

(1 +Q2/M2
Z)2
× (12.41)

[
(ge

V + ge
A)2(s−m2)2 + (ge

V − ge
A)2(s−m2 −Q2)2 + 2[(ge

A)2 − (ge
V)2]m2Q2

]
.

Neglecting m2 � s, Q2, the integrated cross-section becomes

σ ≡
∫ s

0

dσ

dQ2
dQ2 =

G2
F s

4π

{
(ge

V + ge
A)2

(1 + s/M2
Z)

+ (12.42)

+ (ge
V − ge

A)2
M2

Z

s

[
1 +

2M2
Z

s
− 2M2

Z

s

(
1 +

M2
Z

s

)
log

(
1 +

s

M2
Z

)]}
.

For s�M2
Z, we develop the logarithm term of (42) in powers of s/M2

Z, then
in the first approximation, the cross-section depends linearly on s:

σ(νµ + e− → νµ + e−) ≈ G2
F s

4π

[
(ge

V + ge
A)2 +

1

3
(ge

V − ge
A)2
]
. (12.43)

The Z0 propagator effect through (1 +Q2/M2
Z)−2 in (41) is very important

at high energies, since for s � M2
Z , the cross-section (42) ceases to increase

with s, it bends down and tends asymptotically towards a constant

lim
s→∞

σ(νµ + e− → νµ + e−) =
G2

FM
2
Z

2π
[(ge

V)2 + (ge
A)2] . (12.44)

The physical significance of (43) and (44) is worth emphasizing. A cross-
section cannot increase forever as a linear function of energy without vio-
lating the unitarity of the S-matrix. Based on the most general properties
of the latter, Froissart and Martin show that a total cross-section – hence a

fortiori an elastic cross-section considered here – cannot grow asymptotically
faster than (log s)2 . At low energies, the linear dependence of (43) on s is
only approximate; actually, at high energies the cross-section (44) tends to a
constant in accordance with the asymptotic theorem (Froissart bound).

In the laboratory frame, at low energy mEν � M2
Z , we neglect Q2/M2

Z

and use (34), then (41) and (43) can be written as

dσ(νµ + e− → νµ + e−)

dy
=
G2

FmEν

2π

[
(ge

V + ge
A)2 + (ge

V − ge
A)2(1− y)2

]
,

σ(νµ + e− → νµ + e−) =
G2

FmEν

2π

[
(ge

V + ge
A)2 + 1

3
(ge

V − ge
A)2
]
. (12.45)

The y distribution as well as the integrated cross-section enable us to extract
ge
V, g

e
A, i.e. sin2 θW.
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For the antineutrino νµ scattering νµ(k1) + e−(p1)→ νµ(k2) + e−(p2),
its cross-section can be deduced from νµ(k1) + e−(p1)→ νµ(k2) + e−(p2) by
a simple substitution g2

R ≡ (ge
V + ge

A)2 ↔ g2
L ≡ (ge

V − ge
A)2. This rule can be

traced back to (37) for which the current u(k2)γ
λ(1−γ5)u(k1) is replaced by

v(k1)γ
λ(1−γ5)v(k2), i.e. k1 ↔ k2, and the substitution g2

R ↔ g2
L comes from

(40) in which the last term proportional to m2 is neglected. Thus

dσ(νµ + e− → νµ + e−)

dy
=
G2

FmEν

2π

[
(ge

V − ge
A)2 + (ge

V + ge
A)2(1− y)2

]
,

σ(νµ + e− → νµ + e−) =
G2

FmEν

2π

[
(ge

V − ge
A)2 + 1

3
(ge

V + ge
A)2
]
. (12.46)

Numerically, with G2
FmeEν = 27.05× 10−42cm2(Eν/ GeV), we get

σ(νµ + e− → νµ + e−) = 4.3
Eν

GeV

[
(2 sin2 θW − 1)2 + 4

3
sin4 θW

]
10−42cm2,

σ(νµ + e− → νµ + e−) = 4.3
Eν

GeV

[
4 sin4 θW + 1

3
(2 sin2 θW − 1)2

]
10−42cm2.

The ratio of the neutrino/antineutrino cross-sections, which is given by

RN ≡
σ(νµ + e− → νµ + e−)

σ(νµ + e− → νµ + e−)
= 3

1− 4 sin2 θW + 16
3

sin4 θW

1− 4 sin2 θW + 16 sin4 θW
,

enables us to extract sin2 θW. By this method, the electron detection ef-
ficiencies cancel in the ratio, and an absolute neutrino flux is not needed.
Systematic errors are significantly reduced, resulting in an improvement of
the determination of sin2 θW = 0.211 ± 0.036 ± 0.011. From (44) and the
rule g2

L ↔ g2
R for ν ↔ ν, the ratio RN tends to 1 as s → ∞. Note that the

equality holds independently of energy if sin2 θW = 0.25, i.e. if ge
V = 0.

Both neutral and charged currents contribute to reactions (II):

νe(k1) + e−(p1)→ νe(k2) + e−(p2) (II.1) ,

νe(k1) + e−(p1)→ νe(k2) + e−(p2) (II.2) .

For (II.1), the diagrams are Fig. 12.3b and Fig. 12.4, associated respectively
with the Z0 and W exchange in the t and u channels of the t and u vari-
ables defined in (33), i.e. their propagators are (t−M2

Z)−1 and (u−M2
W)−1

respectively. The amplitudes are referred to as MZ and MW. Since both
contribute to the reaction (II.1), their relative sign is important and turns
out to be negative. To see how it arises, it may be convenient to go back
to the second quantization of the fields that enter the composition of MZ

and MW. The latter are obtained from the products of the fermionic cre-
ation and destruction operators which yield the initial and final states when
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applied to the vacuum state |0〉. Since these operators anticommute, their
relative order is important. At g2, they come from the time-ordered product
T [H(x)H(y)]. To determine their relative sign, we consider the combinations

forMZ : b†e(p2)be(p1)b
†
ν(k2)bν(k1) coming from ψe(x)ψe(x)ψν(y)ψν (y) ,

forMW : b†e(p2)bν(k1)b
†
ν(k2)be(p1) coming from ψe(x)ψν(x)ψν(y)ψe(y) ,

where b† (b) is the creation (destruction) fermionic operator (Chap. 3). In
writing these amplitudes, we keep only in T [H(x)H(y)] the order of the

fermion fields. InMZ, using the anticommutation relations of b†j, bj, we have

b†ebeb
†
νbν = +b†eb

†
νbνbe = −b†ebνb†νbe .

The extreme left (right) member of the above equation is related to MZ

(MW), so that the relative sign between MZ andMW is definitely −1. The
expression ofMZ(νe + e− → νe + e−) is identical to that ofMZ(νµ + e− →
νµ + e−) given above in (37). According to Feynman rules, the amplitude
MW[νe(k1) + e−(p1)→ νe(k2) + e−(p2)] is

MW =
GF√

2

u(k2)γ
µ(1− γ5)u(p1) u(p2)γµ(1− γ5)u(k1)

1− u/M2
W

=
−GF√

2

u(k2)γ
µ(1− γ5)u(k1) u(p2)γµ(1− γ5)u(p1)

1− u/M2
W

, (12.47)

after a Fierz rearrangement (Appendix). For low neutrino energy, we may
neglect −t/M2

Z and −u/M2
W in (37) and (47). The relative minus sign can

be conventionally put into MZ, so the total amplitude of the reaction (II.1)
isM =MW −MZ. Combining (37) and the second line of (47), we get

M =
−GF√

2
u(k2)γ

µ(1− γ5)u(k1) u(p2)γµ(g′V − g′Aγ5)u(p1) ,

g′V = 1 + ge
V = +1

2
+ 2 sin2 θW ; g′A = 1 + ge

A = +1
2

. (12.48)

The forward amplitudeM(Eν, q
2 = 0) of (II.1) can be readily obtained from

(48) by putting k1 = k2, p1 = p2 and we recover (19) after summing and
averaging over the electron spin states. The cross-section is now readily
obtained using (45) and (46) as examples. We have

dσ(νe + e− → νe + e−)

dy
=
G2

FmEν

2π

[
(g′V + g′A)2 + (g′V − g′A)2(1− y)2

]

=
G2

FmEν

2π

[
(ge

V + ge
A + 2)2 + (ge

V − ge
A)2(1− y)2

]
,

σ(νe + e− → νe + e−) =
G2

FmEν

2π

[
(ge

V + ge
A + 2)2 +

1

3
(ge

V − ge
A)2
]
. (12.49)
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The amplitude of the reaction (II.1) in (48) is to be compared with (37)
of the reactions (I). The cross-section of (II.2) is deduced from (49) by the
substitution g′A ↔ −g′A or 1↔ (1− y)2 :

dσ(νe + e− → νe + e−)

dy
=
G2

FmEν

2π

[
(ge

V − ge
A)2 + (ge

V + ge
A + 2)2(1− y)2

]
,

σ(νe + e− → νe + e−) =
G2

FmEν

2π

[
(ge

V − ge
A)2 +

1

3
(ge

V + ge
A + 2)2

]
. (12.50)

Finally, the scattering amplitude of the pure charged currents reaction
(III), νµ(k1)+ e−(p1)→ µ−(p2) + νe(k2) is similar to the µ− → e− + νµ + νe

decay. It is given by

M(νµ + e− → µ− + νe) =
GF√

2
u(p2)γ

µ(1− γ5)u(k1) u(k2)γµ(1− γ5)u(p1) .

Using (45) with ge
V = ge

A = 1, the corresponding cross-section is

σ(νµ + e− → νe + µ−) =
2G2

FmEν

π

[
1−

m2
µ

2mEν

]2

. (12.51)

The last factor (1 −m2
µ/2mEν)2 is purely kinematic. Comparing the above

equation with (45), the ratio of NC over CC cross-sections is

RNC/CC ≡
σ(νµ + e− → νµ + e−)

σ(νµ + e− → νe + µ−)
=

1
4
− sin2 θW + 4

3
sin4 θW

[1− (m2
µ/2mEν)]2

.

The integrated cross-sections of the reactions (I), (II) as given by (45), (46),
(49), (50) can be represented in the (ge

V, g
e
A) plane by four ellipses. Their

intersections give two solutions for ge
V, g

e
A since the equations are symmetric

by (ge
V, g

e
A) ←→ −(ge

V , g
e
A). Precise measurements of the purely leptonic

cross-sections come from the CHARM II collaboration at CERN, which gives
sin2 θW = 0.2324± 0.012.

With this value of sin2 θW, the gauge boson masses W± and Z0 could be
estimated long before their discoveries. Using formulas in Chap. 9, we get

M2
W =

παem√
2GF sin2 θW

−→MW ≈ 77.34 GeV , MZ ≈ 88.12 GeV .

Electroweak corrections at one-loop level will increase these tree-level masses
by about 0.038%. The corrected masses agree very well with the experimental
data, MW = 80.33± 0.15 GeV, and MZ = 91.187± 0.007 GeV.

From these studies of neutrino–electron scatterings, we draw another
important conclusion: The linear rise of the cross-section with Eν is char-
acteristic of the neutrino scattered by a pointlike fermion. If the target has
structure, its cross-section cannot increase at large Eν.
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12.5 Neutrino–Nucleon Elastic Scattering

As another example of the effects of the target structure, we consider the
neutrino–nucleon scattering

νµ + N→ µ− + N′ , νµ + N→ µ+ + N′ .

The study of these reactions enables us to familiarize ourself with the two
important properties of the flavor-conserving V − A charged weak current
Vud u γµ(1−γ5) d, to wit, the conserved vector current (CVC) and the partial
conservation of the axial current (PCAC) which are natural consequences of
the standard electroweak model.

The amplitude νµ(k1) + n(p1) → µ−(k2) + p(p2) can be obtained from
that of νµ(k1) + e−(p1) → µ−(k2) + νe(p2) by replacing the pointlike e–νe

current u(p2)γµ(1− γ5)u(p1) by the nucleon n–p current:

Vud 〈p(p2) | Vµ −Aµ | n(p1)〉 =Vud u(p2)

{
γµf1(q

2) +
iσµνq

ν

2M
f2(q

2)

−g1(q2)γµγ5 − g3(q2)
qµ

M
γ5

}
u(p1) , (12.52)

where M is the nucleon mass and qµ = (p2 − p1)µ.
The nucleon form factors of Vµ are denoted by f1,2(q

2), those of the Aµ

by g1,3(q
2). They are real by time-reversal invariance. From considerations of

Lorentz covariance alone, the most general matrix element of Vµ−Aµ has six
form factors, three for Vµ and three for Aµ. Since form factors are induced
by strong interactions which conserve G-parity (Chap. 6), only the terms
even by G-parity transformations are kept. The four form factors in (52)
satisfying this condition are said to be of the first class, following Weinberg.
On the other hand, the two other terms odd under G-parity f3(q

2) and
g2(q

2) respectively proportional to qµ and iσµνq
νγ5 (second class current),

are discarded. In any case, the qµ term does not contribute if the current Vµ

is conserved, i.e. if qµVµ = 0 [see also (10.12)].
According to the CVC hypothesis postulated by Feynman and Gell-

Mann, the vector part Vµ of the weak charged current, its Hermitian conju-
gate V †

µ , and the isospin I = 1 component of the electromagnetic current,
form an isotriplet. Now CVC is a direct consequence of the isospin structure
of the weak charged current uγµd in the standard model. Indeed with the
doublet q for the u, d quark fields, the three currents: Vµ = qγµτ

+ q = uγµd,
V †

µ = qγµτ
− q = dγµu, and Jem

µ (I = 1) = 1
2
qγµτ

3 q = 1
2
(uγµu−dγµd) are the

three components of an isovector (Chap. 9). CVC implies that the weak form
factors f1,2(q

2) are equal to the electromagnetic form factors F 1
1,2(q

2) which
are given by (10.13) and (10.40) from electron–nucleon elastic scattering.

The contribution of g3(q
2) is proportional to the muon mass and can

be neglected. We take mµ = 0 in the following. The contributions of
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f1(q
2) , g1(q

2) to the differential cross-section can be obtained from (41) with
the replacement ge

V −→ f1 , g
e
A −→ g1. We only have to compute the contri-

butions of f2(q
2) and get (Q2 = −q2 > 0)

dσ

dQ2
=
G2

F|Vud|2
4π

[
(f1 + g1)

2 + (f1 − g1)2
(

1− Q2

2MEν

)2

+ (g2
1 − f2

1 )
Q2

2E2
ν

+f2
2

Q2

2M2

(
1− Q2

2MEν
+

Q2

4E2
ν

)
+ f1f2

Q4

2M2E2
ν

+ g1f2

(
2Q2

MEν
− Q4

2M2E2
ν

)]
.

To obtain the antineutrino–nucleon cross-section σ(νµ + p → µ+ + n), we
follow the discussions preceding (46) and simply replace g1(q

2) by −g1(q2)
in the above equation. The value of the differential cross-section at q2 = 0 is
independent of the incident neutrino energy and takes a simple form

dσ(νµ + n→ µ− + p)

dQ2

∣∣∣∣∣
q2=0

=
G2

F|Vud|2
2π

[
f2
1 (0) + g2

1(0)
]
.

As stated, the form factors f1,2(q
2) are equal to F 1

1,2(q
2) [cf. (10.40)]:

f1(q
2) = F 1

1 (q2) ; f2(q
2) = F 1

2 (q2) ; hence f1(0) = 1 ; f2(0) = 3.7 .

Therefore measurements of the neutrino–nucleon differential cross-section
dσ/dq2 enable us to determine the remaining g1(q

2), in particular g1(0).
The value g1(0) ≈ 1.25 can also be determined from neutron β-decay in
which the same flavor-conserving charged current is involved (Problem 13.6).
Experiments show that the q2 dependence of g1(q

2) is of the dipole type,

g1(q
2) = 1.25×

(
1− q2

M2
A

)−2

, with a pole mass MA ≈ 0.95 GeV.

PCAC and the Goldberger–Treiman Relation. The special case of
zero momentum transfer qµ = 0 is illuminating. At q2 = 0, the matrix
element of the nucleon in (52) looks like the pointlike V − A quark current
Vud uγµ(1− γ5)d, the only change is in the form factor g1(0), which shifts to
1.25 from 1. Indeed, from (52) with qµ = 0, we have

Vud 〈p(k) |Vµ − Aµ |n(k)〉 = Vud u(k) γµ [1− g1(0)γ5]u(k) .

We know from CVC that f1(0) must be equal to 1, i.e. at q2 = 0 the vector
form factor f1(q

2) is not renormalized by the strong interaction. The pointlike
vector coupling of quarks is exactly reflected on the hadronic level at q2 = 0,
because the hadronic vector current is conserved, i.e. qµVµ = 0.

We would like to show that the value of g1(0) ≈ 1.25 has something
to do with the partial conservation of the axial current (PCAC) which is a
natural consequence of the small u, d quark mass m, qµAµ = 2m uγ5d. Let
us examine the consequences of the massless quark (m = 0) or equivalently of
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the conserved axial current. For that, we multiply the left- and the right-hand
sides of (52) with qµ. Thus,

qµ 〈p(k2) |Aµ | n(p1)〉 = u(k2)

[
2M g1(q

2) +
q2

M
g3(q

2)

]
γ5 u(p1) .

If the axial current is conserved, i.e. qµAµ = 0, then

g1(0) = lim
q2→0

−q2
2M2

g3(q
2) . (12.53)

Since g1(0) 6= 0, the form factor g3(q
2) must have a pole at q2 = 0 to cancel

the numerator q2. Such a pole implies the presence of a physical massless
particle. There is one available, the nearly massless pion considered as a
Goldstone–Nambu boson in the context of massless up and down quarks.
The fact that the form factor g3(q

2) has a pion pole is clearly indicated in
Fig. 12.9a, from which we derive

u(k2) g3(q
2)
qµγ5

M
u(p1) Wµ =

{√
2gπNNu(k2) γ5 u(p1)

} i

q2 −m2
π

[ifπq
µ] Wµ.

In the above equation,
√

2 gπNN is the charged pion–proton–neutron coupling
constant in the effective pion–nucleon interaction gπNNN γ5 τ

k Nφk, where
φk(x) is the pion field with the isospin index k = 1, 2, 3 [see (6.57–58)]. We
then deduce

g3(q
2) = lim

m2
π→0

−
√

2fπMgπNN

q2 −m2
π

.

Together with (53), one gets the Goldberger–Treiman (GT) relation which
gives g1(0) in terms of gπNN and the pion decay constant fπ ≈ 131 MeV:

g1(0) =
fπgπNN√

2M
, GT relation . (12.54)

With g2
πNN/(4π) ≈ 13.5, the GT relation is satisfied to 5% accuracy. PCAC

is also written in a form which says that we may use ∂µAk
µ(x) to interpolate

the pion field φk(x):

∂µAk
µ(x) =

fπm
2
π√

2
φk(x) , from

〈
0
∣∣Ak

µ

∣∣ πj(q)
〉

=
ifπ√

2
qµδ

kj . (12.55)

The above equation also tells us that the axial current is conserved in the
limit mπ → 0 of the Goldstone–Nambu massless pion.

We cannot leave PCAC without emphasizing that the conservation of
the axial current with massless quarks is only valid at the tree level. Due
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to quantum effects (illustrated by the triangle loop in Fig. 12.9b,c), even
with massless quarks, for the isospin component k = 3 associated with π0,
the ∂µAk=3

µ no longer vanishes. In the presence of electromagnetic interac-
tions, the conservation of both vector and axial currents is incompatible by
loop corrections. To maintain gauge invariance (conservation of the vector
current), we are led to ∂µA3

µ = (e2/16π2)εαβρσFαβFρσ where Fαβ is the
electromagnetic field tensor defined in (2.132). This is called the Adler–Bell–
Jackiw (ABJ) anomaly, which has a number of remarkable consequences, the
most famous being the decay π0 → 2γ for which the three colors of quarks
exhibit their glaring evidence (see Further Reading).
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Fig. 12.9. (a) Pion pole dominance of the axial current ; (b-c) the ABJ anomaly
of the Axial-Vector-Vector currents, related to the π0 → 2 γ decay

Another case of interest in the neutrino–nucleon cross-section is the high
energy limit 2MEν � Q2. The differential cross-section decreases quickly
with Q2 as the square of dipole form factors:

dσ(νµ + n→ µ− + p)

dQ2
=
G2

F|Vud|2
2π

[
f2
1 (q2) + g2

1(q
2) +

Q2

4M2
f2
2 (q2)

]
,

and the integrated cross-section σ is a constant ∼ G2
FΛ2/3π, where Λ ≈ 1

GeV is the pole mass of the form factors. With pointlike targets, σ is
linearly rising with Eν; the contrast is striking. Numerically, this exclusive
cross-section σ(νµ + n → µ− + p) ≤ 10−38 cm2 constitutes a tiny portion of
the inclusive σ(νµ+N→ µ−+X) which we consider in the following section.

12.6 Neutrino–Nucleon Deep Inelastic Collision

One of the most dramatic evidences for quarks as fundamental constituents
of hadrons is provided by data on deep inelastic neutrino–nucleon, its cross-
section shows up as a linearly rising function of the incident neutrino energy.
From experiments at CERN, FermiLab, and Serpukhov, with Eν ranging over
two orders of magnitude, from 2 to 260 GeV, the neutrino and antineutrino
cross-sections continue to increase impressively (Fig. 12.10). This behavior
is what we expect from neutrino scattering by a pointlike particle, illustrated
by the previous study with the target electron. We remark that for Eν ∼ 300
GeV, s ∼ 2MEν �M2

W , so that the linear approximation of the cross-section
is still valid and the propagator effect of the W boson can be neglected.
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12.6.1 Deep Inelastic Cross-Section

Deep inelastic neutrino–nucleon cross-section can be easily transcribed from
that of deep inelastic electron–nucleon scattering; the photon exchange of
the latter is replaced by the weak boson W± or Z0 of the former, depending
on whether ν` + N → `− +X or ν` + N → ν` +X process is observed. For
definiteness, let us concentrate on charged current deep inelastic scattering
(Fig. 12.11). The cross-section νµ(p) + N(P )→ µ−(p′) +X can be obtained
from e(p) + N(P )→ e(p′) +X by (10.41) by the replacements

couplings and propagators :
e2

q2
−→

( g

2
√

2

)2 1

q2 −M2
W

=
−GF√

2(1 + Q2

M2
W

)
,

lepton vertex : `γµ` −→ `γµ(1 − γ5)ν` ,

hadron vertex : Jem
µ ≡ qγµq −→ VQq (Vµ −Aµ) ≡ VQqQγµ(1−γ5)q .(12.56)
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Fig. 12.10. σ(νµ + N → µ− + X) , σ(νµ + N → µ+ + X)

Taking the square of the matrix element, the leptonic tensor lµν in
(10.28) becomes now l̃µν . We have

l̃µν(p, p′) = 2 Tr[ 6 p′γµ 6pγν(1− γ5)]

= 8
(
pµp′ν + pνp′µ − gµνp · p′ − i εµναβpαp

′
β

)
. (12.57)

Compared with lµν in (10.28), we note the absence of the factor (1
2
) of the

spin average before the trace of l̃µν , since the incoming neutrino has only one
helicity, contrary to the electron in lµν . We have a factor of 2 because of
(1 − γ5)

2 = 2(1− γ5) in l̃µν . For antineutrino νµ(p) + N(P ) → µ+(p′) +X,
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the modification in l̃µν(p, p′) is the interchange p ↔ p′. Hence we have

+i εµναβpαp
′
β in the corresponding l̃µν of antineutrinos.
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Fig. 12.11. (a) Deep inelastic neutrino–nucleon scattering by charged current; (b)
νµ + d(or u) → µ− + u(or d) at the parton level

As for the dimensionless hadronic tensor W̃µν(P, q) – defined analogously
to Wµν(P, q) in (10.42) with the replacement (56) – it has both symmetric and
antisymmetric parts due to the parity violating V×A of the weak currents.
Contrary to electromagnetic currents which are conserved, weak currents are
not: qµW̃µν(P, q) 6= 0, therefore W̃µν(P, q) has the maximum number of
Lorentz-invariant terms. Following (10.43), we write

W̃µν(P, q) = 4π
{
−gµνW̃1(q

2, ν) +
PµPν

M2
W̃2(q

2, ν)− i εµναβ

2M2
PαqβW̃3(q

2, ν)

+
qµqν

M2
W̃4(q

2, ν) +
Pµqν + Pνqµ

2M2
W̃5(q

2, ν) +
i (Pµqν − Pνqµ)

2M2
W̃6(q

2, ν)
}
.

When W̃µν(P, q) is multiplied by the leptonic tensor l̃µν(p, p′), the antisym-

metric (Pµqν − Pνqµ) factor of W̃6 vanishes when contracted with εµναβ

(because only three of the vectors p, p′, q, P are independent). The other

factors involved in W̃4,5 are proportional to the squared mass of the muon,
and can be neglected. In the following, we take mµ = 0. Only three struc-

ture functions W̃1,2,3(q
2, ν) remain in the ν–N cross-section, instead of two

W1,2(q
2, ν) in the electron–nucleon deep inelastic cross-section. Using the

general formula (10.41) together with the replacements (56), the neutrino
deep inelastic cross-section dσin is given by

dσin(νµ + N→ µ− +X) =
1

2(s−M2)

G2
F

2

1

(1 + Q2

M2
W

)2
l̃µνW̃µν

d3p′

(2π)3 2Ep′

.

In the laboratory system P = (M, 0) , p = (E = |p|,p) , p′ = (E′ = |p′|,p′),
q2 = (p − p′)2 = −2EE′ sin2 θ

2
, ν ≡ P · q/M = (E − E′), we find

l̃µνW̃µν = 64πEE′

{
2W̃1 sin2 θ

2
+ W̃2 cos2

θ

2
+ W̃3

E + E′

M
sin2 θ

2

}
.
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For Q2 �M2
W, we can neglect the W boson propagator effects and obtain

dσν,ν

dQ2dν
=

G2
F

2πM

E′

E

{
2W̃1(q

2, ν) sin2 θ

2
+ W̃2(q

2, ν) cos2
θ

2

±W̃3(q
2, ν)

E + E′

M
sin2 θ

2

}
. (12.58)

From the p↔ p′ interchange mentioned above, the +(−) sign corresponds to
νµ(νµ) . Like the electron scattering in (10.65), the neutrino cross-section
may be conveniently recast in terms of the Bjorken variable x and the energy
loss variable y = ν/E. With dQ2dν = 2MEν dx dy, (58) becomes

dσν,ν

dxdy
=
G2

FME

π

{
W̃1(x, q

2)x y2 +
ν

M
W̃2(x, q

2) (1− y)

± ν

M
W̃3(x, q

2)x y
(
1− y

2

)}
. (12.59)

12.6.2 Quarks as Partons

We immediately see in (59) that, when q2 becomes very large and the struc-

ture functions W̃ (x, q2) do not vanish, the deep inelastic ν–N cross-section
rises linearly with the neutrino energy E, exactly as if the neutrino were
hitting a pointlike object. This feature is dramatically confirmed by experi-
ments (Fig. 12.10) and is similarly found in the e–N deep inelastic scattering
studied in Chap. 10. Both electromagnetic and weak currents are probing
the same pointlike spin- 1

2
constituents of the nucleon. In analogy with e–N

deep inelastic scattering, we identify the partons as quarks and antiquarks.
The parton picture discussed in the electromagnetic case can be extended
to deep inelastic neutrino scattering. Let us then write the charged current
cross-section of νµ scattered by a pointlike spin- 1

2
object [quark Qj or anti-

quark Qk of mass mj,k and four-momentum kµ
j,k = zj,kP

µ]. Using (45) and
(46), with gV = gA = 1, in addition to the appropriate CKM mixing, and
similar to (10.51) with the trick

∫
dx δ(z − x) = 1, we have

dσ(νµ + Qj → µ− + q1)

dxdy
= |VQjq1

|2 2G2
FmjE

π
δ(zj − x) ,

dσ(νµ + Qk → µ− + q2)

dxdy
= |VQkq2

|2 2G2
FmkE

π
(1− y)2 δ(zk − x) . (12.60)

We remark that if a quark is hit by a neutrino, there is no y dependence;
but when an antiquark is probed, the dependence is (1 − y)2. Similarly, the
antineutrino–antiquark cross-section is y independent, while the antineutrino–
quark cross-section [see (46)] varies as (1−y)2 . These distributions correspond
to the V−A charged currents of the standard model. In models beyond the
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standard model with a V + A coupling for hypothetic new quarks, we sim-
ply interchange 1 with (1 − y)2 or Q(x) with Q(x) in (60). Deep inelastic
cross-section is then the sum of parton cross-sections, each contribution is
weighted by the distribution Qj(zj) , Qk(zk) in the nucleon.

As in (10.50)–(10.52), the contributions of quarks and antiquarks to the
cross-section can be obtained from (60) (remember mj,k = Mzj,k, where M
is the nucleon mass):

∑

j

∫
dzj

2G2
FmjE

π
Qj(zj)δ(zj − x) =

∑

j

2G2
FME

π
xQj(x) ,

∑

k

∫
dzk

2G2
FmkE

π
Qk(zk)δ(zk − x)(1− y)2 =

∑

k

2G2
FME

π
xQk(x)(1− y)2 .

We have

dσν

dxdy
=

2G2
FME

π
x
∑

j,k

[
|VQjq1

|2Qj(x) + |VQkq2
|2Qk(x)(1− y)2

]
,

dσν

dxdy
=

2G2
FME

π
x
∑

j,k

[
|VQkq2

|2Qk(x) + |VQjq1
|2Qj(x)(1− y)2

]
. (12.61)

Let us rewrite (59) as a power series in (1− y):

dσν,ν

dxdy
=
G2

FME

π

{
x
[
W̃1 ±

ν

2M
W̃3

]
+
[ ν
M
W̃2 − 2x W̃1

]
(1− y)

+x
[
W̃1 ∓

ν

2M
W̃3

]
(1− y)2

}
. (12.62)

In the parton picture, (61) is identified with (62). By comparing the coef-
ficients of (1 − y)n for n = 0, 1, 2 in the expressions in (61) and (62), we
get

W̃1(x, q
2)→ F̃1(x) ;

ν

M
W̃2(x, q

2)→ F̃2(x) ;
ν

M
W̃3(x, q

2)→ F̃3(x) ;

F̃1(x) =
∑

j,k

[
|VQjq1

|2Qj(x) + |VQkq2
|2Qk(x)

]
; F̃2(x) = 2xF̃1(x) ;

F̃3(x) = 2
∑

j,k

[
|VQjq1

|2Qj(x)− |VQkq2
|2Qk(x)

]
. (12.63)

The structure functions F̃2(x) and F̃3(x) can be separated by writing the
sum and difference of (62) for neutrino and antineutrino:

dσνN + dσνN

dxdy
=
G2

FME

π
F̃2(x)

[
1 + (1− y)2

]
,

dσνN − dσνN

dxdy
=
G2

FME

π
x F̃3(x)

[
1− (1− y)2

]
. (12.64)
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In (64), N stands either for the proton or the neutron. Let us specify what
Qj(x) and Qk(x) are. At the parton level (Fig. 12.11b), below the charmed
hadron threshold, we have for reactions involving neutrinos

νµ + d→ µ− + u , νµ + s→ µ− + u ,

νµ + u→ µ− + d , νµ + u→ µ− + s.

We then deduce (taking for simplicity |Vud|2 + |Vus|2 = 1)

F̃ ν,p
2 (x) = 2x

[
|Vud|2d(x) + |Vus|2s(x) + u(x)

]
= 2xF̃ ν,p

1 (x) ,

F̃ ν,p
3 (x) = 2

[
|Vud|2d(x) + |Vus|2s(x) − u(x)

]
, (12.65)

where u(x), d(x), and s(x) are the up, down, and strange quark distributions
inside the proton.

For antineutrino reactions, the corresponding structure functions are
obtained from the above equation with the replacements of qj(x) with qj(x)

in F̃1,2 and qj(x) with − qj(x) in F̃3, i.e.

F̃ ν,p
2 (x) = 2x

[
u(x) + |Vud|2d(x) + |Vus|2s(x)

]
= 2xF̃ ν,p

1 (x) ,

F̃ ν,p
3 (x) = 2

[
u(x)− |Vud|2d(x)− |Vus|2s(x)

]
. (12.66)

As already discussed in (10.58), the up quark distribution in the neutron
is d(x) and the down quark distribution in the neutron is u(x), by isospin
invariance. Then

F̃ ν,n
2 (x) = 2x

[
|Vud|2u(x) + |Vus|2s(x) + d(x)

]
,

F̃ ν,n
3 (x) = 2

[
|Vud|2u(x) + |Vus|2s(x)− d(x)

]
. (12.67)

The structure function of an isoscalar target (sum of proton and neutron)
probed by the neutrino is obtained using (65) and (67) (in which we put
|Vud|2 ≈ .95 = 1, |Vus|2 ≈ 0.048 = 0 for simplicity):

F̃ I=0
2 ≡ [F̃ ν,p

2 (x) + F̃ ν,n
2 (x)] = 2x

[
u(x) + d(x) + u(x) + d(x)

]
. (12.68)

Comparing the above equation with (10.64) which gives the electromagnetic
structure function F I=0

2 of the same isoscalar target (deuteron), we get

F̃ I=0
2

F I=0
2

≤ 18

5
. (12.69)

The equality holds if in (10.64) we neglect the contribution of sea quarks
s(x), s(x) to the electromagnetic structure function F I=0

2 (x), which amounts
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to at most 13.5%. If quarks had integral (and not fractional) charges, this
ratio would be ≤ 2.

The structure functions 18
5
F I=0

2 (x) and F̃ I=0
2 (x), which are the main

quantities measured in deep inelastic scattering, are plotted in Fig. 12.12.
The agreement of data with (69) is remarkable and provides another strong
confirmation of the fractional charges of quarks. With the photon γ and weak-
boson W± probes, the electron and the neutrino see the same constituents
of the nucleon, and the quark fractional charges can be revealed.

Finally, from (61), the ratio of the integrated cross-sections σν,N/σν,N

gives the antiquark (sea) content of the nucleon:

R =
σν,N

σν,N
=

3 + α

1 + 3α
, α ≡

∫ 1

0
dx xQ(x)

∫ 1

0
dx xQ(x)

< 1 . (12.70)

If the sea is absent, the ratio would be 3. From data plotted in Fig. 12.10,
the ratio R turns out to be ∼ 0.67Eν/0.3Eν ∼ 2.23, which corresponds to
α ∼ 0.135.
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Fig. 12.12. Comparison of the isoscalar structure functions 18

5
F2(x) and F̃ ν

2 (x) as
measured in electron and neutrino deep inelastic scatterings on nucleons. Data are
taken from Fig. 8.12a of Perkins, D. H., An Introduction to High Energy Physics
Addition-Wesley 1987. Adapted with permission of Addition-Wesley Longman Inc.
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Problems

12.1 Leptons mixing. If the neutrinos are massive, the three doublets
of leptons are mixed by Vlep, analogously to the VCKM of the quark sector.
Then the leptonic flavors (or numbers) are no longer conserved, the decay
µ± → e± + γ can occur. Draw the corresponding Feynman diagrams. Show
qualitatively that the rate is proportional to Vlep and to the neutrino masses.

12.2 Solar neutrino flux. The solar heat flux received on earth is
≈ 1.95 cal/cm2/min, and the distance sun-earth is ≈ 1.5× 108 km. Deduce
that the solar luminosity is ≈ 3.86×1033 erg /sec. According to the standard
solar model, the sun shines by converting protons into helium (α):

4p→ (He)
4
2 + 2e+ + 2νe + γ .

For every four protons consumed, this fusion produces about 26 MeV = 4.16
×10−5 erg of thermal energy. How many fusions take place in the sun every
second ? Show that there are ≈ 1.8 × 1038 neutrinos produced by the sun
per second. Deduce that the solar neutrino flux at the surface of the earth is
≈ 6.4× 1010/cm2/sec.

12.3 Effective neutrino mass in matter. Compute the effective
mass of a neutrino of energy 10 MeV traveling in a supernova core (den-
sity 1014 g/cm3) and in the solar core (density 100 g/cm3). Estimate the
mean free path l of the neutrino.

12.4 Electromagnetic and weak decays of the π0. Compute the weak
decay rate π0 → Z0 → e+e−, using π+ → W+ → e+νe as a guide. The
electromagnetic decay width Γem(π0 → γ + γ → e+ + e−) can be estimated
to be ∼ (2αme

Mπ
log me

Mπ
)2Γ(π0 → γ + γ). Draw the Feynman diagram of this

cascade decay, and explain the origin of the coefficient (αme/Mπ)2. The
logarithm term comes from a loop integral. From experimental data, the
width Γ(π0 → γ + γ) is 2.5× 10+12 larger than ΓW (π+ → e+ + νe); deduce
that ΓW (π0 → e+e−)� Γem(π0 → e+ + e−).

12.5 Neutrino sum rule. Just as for (10.62), show that

∫ 1

0

dxF̃ ν,N
3 (x) ≡ 1

2

∫ 1

0

dx
[
F̃ ν,p

3 (x) + F̃ ν,n
3 (x)

]
= 3 ,

which tells us that the number of valence quarks in the nucleon is three.
Again this sum rule agrees remarkably well with experiments.

12.6 Neutral current deep inelastic scattering. Write the differential
cross-sections in terms of the parton distributions u(x), d(x),etc. ,

dσ

dxdy
(ν + N→ ν +X) and

dσ

dxdy
(ν + N→ ν +X) .
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Derive the Paschos–Wolfenstein relation

dσν
NC − dσν

NC

dσν
CC − dσν

CC

= |uL|2 + |dL|2 − |uR|2 − |dR|2 =
1

2
− sin2 θW ,

which may be used to determine the Weinberg angle.
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