
11 Neutral K Mesons and CP Violation

The neutral K mesons, with their medium-sized masses and their capacity of
interacting both weakly and strongly, seem to be specially selected by nature
to demonstrate through a few typical phenomena the reality of quantum
effects. Even if they did not exist, as L. B. Okun once said, we would have
invented them in order to illustrate the fundamental principles of quantum
physics.

Four of these phenomena will be studied in this chapter. The first to be
considered arises from the existence, in the presence of strong interactions
only, of two degenerate states of opposite strangeness quantum numbers,

called K0 and K
0
. These states are mixed by the weak interaction, which

does not conserve strangeness, to produce two states quite similar in their
masses (which differ only by ∆m = 3.49×10−6 eV = 5.30×109 s−1) but very
dissimilar in their distinctive decay modes and their lifetimes. One short-
lived, KS, with lifetime τS = 8.92×10−11 s, and the other long-lived, KL, with
lifetime τL = 5.17× 10−8 s. The existence of these states results in a second
property called strangeness oscillations: a pure strangeness eigenstate, say
K0, produced at a given time becomes at a later time a mixture of K0 and

K
0
. The amplitude of such a meson beam oscillates in time with a period of

T = 2π/∆m = 1.18× 10−9 s.

The third property to be studied concerns the regeneration of KS. Con-
sider a beam of K0 produced at time t = 0 by some strong interaction pro-
cess. After a lapse of time of the order of τS, every K meson decays into
two pions through its KS components; but this process ceases to occur after
τS � t� τL when all the KS have gone, leaving only the KL in the beam. If
a block of matter is now placed on the beam path, the KL will interact with
matter and partially transforms itself into KS.

Last but not least, we will discuss the CP violation by weak interac-
tions, a phenomenon first reported in 1964 and to this day observed only in
the neutral K meson system. It is one of the most fundamental but least
understood properties of particle physics. To explore the physics of heavy
flavors, several B meson factories are being constructed in the U. S. A. and
Japan. Among the first projects to be carried out at these laboratories will
certainly see the investigation of the nature, the origin, and the mechanism
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of the CP violation. The importance of this study may even have a larger
impact if the enormous disproportion of matter (baryons) and antimatter
(antibaryons) existing in the universe is regarded as a direct consequence of
a CP violation that occurred just after the Big Bang.

11.1 The Two Neutral K Mesons

From Dirac’s work (Chap. 3), we know that each particle corresponds to
an antiparticle, both having equal masses, spins, and lifetimes. But their
charges of all types (electric, leptonic, baryonic, flavor, or color) are equal in
magnitudes but opposite in signs. Among the electrically neutral particles,
the neutron is distinct from the antineutron, but certain particles such as the
photon, the mesons π0 and η are identical to their respective antiparticles.
In contrast, the neutral K mesons have peculiarly mixed identities.

Recall first that the pseudoscalar mesons K+, K0 and their conjugates

K− and K
0

are bound states, composed mainly of quarks u, d, and s. In Table
11.1, their quantum numbers (strangeness, isospin) and quark contents are
given.

Table 11.1. Strange pseudoscalar mesons

K Mesons Quark contents I3 Strangeness S

K+ su + 1
2

+1

K0 sd −
1
2

+1

K
0

ds + 1
2

−1

K− us −
1
2

−1

The two mesons K
0

and K0 are quite distinct in the presence of strong
interactions which conserve strangeness. Consider for example the strong
production process π− +p → K0 +Λ. The initial state has zero strangeness;
therefore, since Λ ≡ sdu has strangeness S = −1, it is a K0 with S = +1 that

is produced in the final state, and not a K
0
. If strange particles are produced

in a strong interaction (normally from nonstrange particles), they are always
produced in pairs of particles of opposite strangeness quantum numbers so
as to conserve total strangeness (a phenomenon called the associated produc-

tion). On the other hand, since the baryonic number is equally conserved by
the strong interaction and since the initial state (the proton) has baryonic

number NB = 1 in the present example, the final state cannot be K
0

+ Λ in
spite of its correct strangeness. Thus, from the point of view of the strong

interaction, K0 is as distinct from K
0

as the neutron is from the antineutron.

The difference between these two pairs K0–K
0

and n–n appears in the
presence of the weak interaction. As far as we know, the baryonic number
is conserved in all situations (the proton lifetime is greater than 1039 s), but
strangeness is not, being broken in weak processes. The conservation of NB

forbids transitions between the neutron and the antineutron because there
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exist no common intermediate states connecting those two states. On the

other hand, both K
0

and K0 can decay into pions via strangeness-violating

weak transitions. Thus, the transmutation of K0 into K
0
, or inversely of K

0

into K0, can proceed through common intermediates states of pions, as in

K0 −→ (2π, 3π) −→ K
0
. (11.1)

On the quark level, the transitions K0 ↔ K
0

are represented by the Feynman
box diagrams in Fig. 11.1. Via the weak interaction, the s and d quarks of
K0 annihilate into a pair W+W− (Fig. 11.1a) or a pair of quark–antiquark
QiQj in all possible combinations of the three u, c, t quarks (Fig. 11.1b).

These pairs W+W− and QiQj then transform by the same weak interaction

into s and d, giving a K
0

in the final state. Since these transitions change
strangeness by two units (|∆S| = 2), they must proceed through the weak
interaction.
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Fig. 11.1 a, b. K0
↔ K

0
transition through sd → d s

As implicitly understood in the above discussion, K0 and K
0

are re-
spectively strangeness eigenstates with eigenvalues S = 1 and S = −1, a
meaningful statement only in the absence of weak interactions. Since S is
not conserved by weak interactions, another quantum number has to be used
to classify the neutral K mesons wherever the weak interaction operates. It
turns out that the combined charge conjugation and parity operators, CP ,
provide an almost perfect candidate for this role, ‘almost’ because the sym-
metry they represent is in fact only slightly violated (by a factor of 10−3),
while parity P and charge conjugation C are each separately violated at the
highest level by weak interactions.

Leaving temporarily aside the question of its violation, we assume in this
and the next three sections that CP is a good symmetry even in the presence

of the weak interaction. As the K mesons are pseudoscalar, P
∣

∣

∣K
0
〉

= −
∣

∣

∣K
0
〉

and P
∣

∣K0
〉

= −
∣

∣K0
〉

, and as K
0

and K0 are charge conjugates to each other,

C
∣

∣K0
〉

=
∣

∣

∣K
0
〉

by an appropriate choice of phase, one gets

CP
∣

∣K0
〉

= −
∣

∣

∣K
0
〉

, CP
∣

∣

∣K
0
〉

= −
∣

∣K0
〉

. (11.2)
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From this it follows that the orthogonal linear combinations

∣

∣K0
1

〉

≡ 1√
2

(

∣

∣K0
〉

−
∣

∣

∣K
0
〉)

,
∣

∣K0
2

〉

≡ 1√
2

(

∣

∣K0
〉

+
∣

∣

∣K
0
〉)

, (11.3)

are eigenstates of CP :

CP
∣

∣K0
1

〉

= +
∣

∣K0
1

〉

, CP
∣

∣K0
2

〉

= −
∣

∣K0
2

〉

. (11.4)

The state K0
1 is even and K0

2 is odd under CP.
To determine their decay modes into pions, it suffices to find the cor-

responding CP-parities of the multipion states. It turns out (Problem 11.1)
that neutral two-pion states (π0 +π0 and π+ +π−) are CP-even and neutral
three-pion states (π0 + π0 + π0 and π0 + π+ + π−) are CP-odd. Since CP is
assumed to be conserved, the only allowed decay modes are

K0
1 → 2π , K0

2 → 3π . (11.5)

It is noteworthy that these are the only hadronic decay channels open to the
neutral K mesons, a fact attributed to the particular value of their mass,
just slightly over three times the mass of the pion. This fact also implies
that kinematics favors the two-pion mode over the three-pion mode because
the kinetic energy available to the reaction products is larger, and the phase
space is correspondingly larger in the former than in the latter. Therefore,
K0

1 has a proportionally larger decay width or equivalently a shorter lifetime
than K0

2.
This was a result predicted by Gell-Mann and Pais and later confirmed

by experiment. What was observed was that the neutral K mesons decayed
in two different hadronic channels at two different time scales. The first type
goes through two-pion channels, with lifetime τS = 8.92×10−11 s, and is called
KS. The second type, which can decay into three pions with characteristic
time τL = 5.17 × 10−8 s, is called KL. Assuming CP conservation, one may
identify KS with the CP-even state K0

1, and KL with the CP-odd state K0
2.

This double property, mass degeneracy and distinct lifetimes, is unique
to the neutral K mesons. The situation is completely different with the
neutral D mesons and the neutral B mesons, which yet parallel the K mesons
in their quark compositions only with heavier flavors.

11.2 Strangeness Oscillations

We now consider the evolution in time of the amplitudes of states KS and
KL. They are of the general form

a(t) = a(0) exp[−i(E − i
2Γ)t] , (11.6)

here E is the energy of the state and Γ its total decay width. The term iΓ/2
is what is needed to yield the familiar exponential decay law

I(t) = a(t)a(t)∗ = |a(0)|2e−Γt , (11.7)
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which says that the particle decays at the rate given by Γ. For a stable
noninteracting particle, Γ = 0 and the amplitude a(t) is given by the usual
exp(−ip · x). In the particle rest frame, the particle energy equals its mass
E = m, and its lifetime is given by τ = h̄/Γ.

Thus, the amplitudes that describe the time evolution of KS and KL are
respectively

aS(t) = aS(0)e−(ΓS

2 + imS)t , aL(t) = aL(0)e−(ΓL

2 + imL)t . (11.8)

There is no reason to expect here that the corresponding masses mS and mL

be equal even though by CPT invariance the masses of K
0

and K0 must be
identical (Chap. 5). However, as the decay modes and the lifetimes of KS

and KL are bound to differ from effects of the |∆S| = 2 effective interactions
mentioned above, it is expected that ∆m ≡ mL − mS 6= 0. We will now
discuss how ∆m is calculated and measured, and how it gives rise to the
oscillation phenomenon observed in neutral K meson beams.

Suppose at t = 0 a K0 beam is produced, e.g. by the strong production
process π− + p → K0 + Λ. Its amplitude written in terms of KS = K0

1 and
KL = K0

2 is K0 = 1√
2
(KS + KL), or aK0(t) = 1√

2
[aS(t) + aL(t)]. The beam

intensity for K0, call it I0(t), is given by

I0(t) =
1

2
[aS(t) + aL(t)] [aS(t) + aL(t)]

∗
, (11.9)

or equivalently, making use of (8), the normalized density N(t) = I(t)/I(0)
is given by

N0(t) =
1

4

[

e−ΓSt + e−ΓLt + 2 e−(ΓS+ΓL)
t
2 cos(∆mt)

]

. (11.10)

Similarly, we may write the normalized density for the K
0

beam (produced

at t = 0 for example by the reaction π+ + p → K
0

+ K+ + p) as

N0̄(t) =
1

4

[

e−ΓSt + e−ΓLt − 2 e−(ΓS+ΓL)
t
2 cos(∆mt)

]

. (11.11)

Thus, the two beams oscillate with frequency ∆m/2π (Fig. 11.2). Since
∆mτS = 0.47, the oscillation waves will be clearly visible at t of the order of
a few τS, before all the KS have died out, leaving only the KL in the beam.
As cτS = 2.67 cm and cτL = 1551 cm, the KL will survive long after all the

KS have gone. In a beam made up entirely of K0 at time t = 0, mesons K
0

will appear far from the production source through their presence in KL with

equal probability as K0. Similarly, an initially pure K
0

will progressively
become contaminated with K0.
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Fig. 11.2. Plots of N0(t) and N0̄(t), t in units of 10−10 s

The oscillations can be detected from observing the K`3 decay modes.

In fact, from the quark contents of K0(sd) and K
0
(sd), it follows that s →

u+`+ +ν` (s → u+`−+ν`) and therefore the K
0

and K0 decays are governed
by the ∆S = ∆Q rule:

K0 → π− + `+ + νl , K
0 → π+ + `− + ν̄l . (11.12)

Indeed from the initial K0 to the final π− hadronic states, there is a change in
strangeness, ∆S = (+1)−(0) = +1, and in electric charge ∆Q = (0)−(−1) =

+1, so ∆S = ∆Q. The same change ∆S = ∆Q = −1 occurs in K
0 → π+.

Then from this rule, we can identify K0 by its decay product e+, and the

K
0

by its e−. By recording the number of the emitted positrons (N+) and
electrons (N−), one can measure the charge asymmetry

δ(t) ≡ N+ −N−

N+ +N− =
N0(t) −N0̄(t)

N0(t) +N0̄(t)
(11.13)

whose time evolution as given by (10) and (11) is

δ(t) ∼ 2 e−(ΓS+ΓL)
t
2 cos(∆mt) . (11.14)

This asymmetry displays a sinusoidal time oscillation, from which one may
infer the magnitude of the mass difference (Fig. 11.3). Experiment gives the
mass difference |∆m| ' 3.49× 10−6 eV ' 5.30× 109 s−1 (the sign of ∆m will
be considered in the following section).
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Fig. 11.3. The charge asymmetry δ(t) in the decays K0
→ π∓e± +ν, as measured

by Gjesdal, S. et al., Phys. Lett. 52B (1974) 113. Reprinted by permission of
Elsevier Science

11.3 Regeneration of K0
S

Let us consider again a K0 beam produced at t = 0, and suppose that, long
after the vanishing of all the KS from the beam so that only the KL component
remains, we place on the path of the beam a block of matter which may be
regarded for all practical purposes as composed of protons and neutrons. Pais

and Piccioni suggested in 1955 that, as the K0 and K
0

components present in
KL interact very differently with matter, the KS would eventually reappear
in the beam. That this is indeed the case can be seen by examining the

hadronic interactions of K0 and K
0

with the neutron and the proton. While

there are no differences in their elastic scatterings, only K
0

can be absorbed

by matter through K
0
+p → Λ+π+ or K

0
+n → Λ+π0. Similar processes for

K0 are forbidden by the strangeness conservation: thus K0 +p 6→ Λ+π+ and
K0 + n 6→ Λ + π0. This difference in the absorption properties of K mesons
by matter is essential to understanding the regeneration of KS as the beam is
traveling through matter. If we call f and f̄ the amplitudes of scattering of

K0 and K
0

on the atomic nuclei in matter, then, as we have just seen, f 6= f̄ .
Now, the wave function that enters the block is that of KL:

ψi = ψKL
=

K0 + K
0

√
2

. (11.15)

Interactions of the mesons with matter will cause the wave function to change,
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so that at exit it is given by

ψf =
1√
2
(f K0 + f K

0
) =

1

2
[(f + f)KL + (f − f)KS] . (11.16)

In other words the KL amplitude will become KL + rKS, where r = f−f̄
f+f̄

parameterizes the regeneration process, a factor which depends on the prop-
erties of the sample of matter that the beam has gone through. Since r 6= 0,
there must be regeneration, and the phenomenon has been observed.

The KS regeneration can be exploited to measure the mass difference
∆m, a quantity of key importance in the studies of neutral K mesons. For
this purpose, let us place on the path of the beam two blocks of matter
separated by a distance d that may be varied at will. When KL and the
regenerated KS go through the second block, their oscillations interfere in
a manner different than in the vacuum and that depends on d. By letting
d vary, one may determine the sign of ∆m from the observed interference
effects between the KL and KS. It turns out that ∆m > 0, that is, mL > mS.
The KS regeneration phenomenon, which arises from an interplay between
strangeness hadronic eigenstates and weakly interacting CP eigenstates, dis-
plays many similarities with the oscillations of neutrinos in matter, which we
will discuss in the next chapter.

The two pairs (K0,K
0
) and (KL,KS), which represent respectively the

eigenstates of strangeness S and discrete symmetry CP, are dual from the
quantum physics viewpoint. The neutral K system which decays into π−e+νe

and π+e−νe are respectively K0 and K
0
. These modes involve the strangeness

S operator. The same neutral K system which decays into two-pion and
three-pion modes are respectively KS and KL. These decays concern the CP
operator. The semileptonic and hadronic decay modes are used to select the
eigenstates of S and CP respectively.

In some sense, the pairs (K0,K
0
) and (KL,KS) are similar to the spin

states σx and σy of the electron. The operators S and CP play the role of
two orthogonal magnetic fields Hx and Hy which project out the spins σx

and σy. According to the Heisenberg uncertainty principle and demonstrated
by the Stern–Gerlach experiment, it is impossible to quantize simultaneously
the components σx and σy of the electron spin since they do not commute.

Similarly, the two pairs (K0 ,K
0
) and (KL,KS) cannot be simultaneously de-

termined, the operators S and CP also do not commute in weak interaction.
We have a simple illustration of the two familiar concepts in quantum physics,
state superposition and quantization.

11.4 Calculation of ∆m

All three phenomena that we have just described depend on the mass differ-
ence between KL and KS. It would therefore be interesting to see how ∆m
is viewed in the standard model. Let us write mL and mS as the real part of
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the expectation values of a certain Hamiltonian operator H = H(0) +H(2),
the imaginary part is related to their decay widths (the subscripts 0 and 2
correspond to the ∆S = 0 and |∆S| = 2 transitions):

mL ≡ Re [〈KL |H |KL〉] = Re

[

1

2

〈

K0 + K
0 |H |K0 + K

0
〉

]

,

mS ≡ Re [〈KS |H |KS〉] = Re

[

1

2

〈

K0 − K
0 |H |K0 − K

0
〉

]

, (11.17)

from which is deduced

∆m ≡ mL −mS = Re
[〈

K0
∣

∣

∣
H(2)

∣

∣

∣
K

0
〉

+
〈

K
0
∣

∣

∣
H(2)

∣

∣

∣
K0
〉]

. (11.18)

This relation tells us that ∆m stems from the effective |∆S| = 2 interac-

tion H(2) that causes the transitions between K0 and K
0
, represented by the

diagrams in Fig. 11.1. To illustrate the calculation of the matrix elements
involved, at first we keep only the contributions from the u quark in the inter-
mediate states and assume that the four-momenta of the external quarks may
be neglected. Applying the Feynman rules for the standard model (Chap. 9),
we obtain for the process represented in Fig. 11.1a the transition amplitude

Ma =i

[ −ig

2
√

2
V ∗

ud

]2[ −ig

2
√

2
Vus

]2∫
d4k

(2π)4
ū(s)γλ(1− γ5)

i(6k +mu)

k2 −m2
u

γρ(1− γ5)v(d)

× v̄(s)γα(1 − γ5)
i(6k +mu)

k2 −m2
u

γσ(1 − γ5)u(d)
−igλσ

k2 −M2
W

−igαρ

k2 −M2
W

.(11.19)

The Feynman–’t Hooft (ξ = 1) gauge is used for the W-boson propagator.
Of course, the end result [(see (36) below] should be independent of the
particular gauge used in the calculation, and (19) can be written as

Ma =
ig4(V ∗

udVus)
2

16
IµνT

µν , with (11.20)

Iµν =

∫

d4k

(2π)4
kµkν

(k2 −M2
W)2(k2 −m2

u)2
, and

Tµν = [ū(s)γλγ
µγρ(1 − γ5)v(d)] [v̄(s)γργνγλ(1 − γ5)u(d)] . (11.21)

Neglecting m2
u/M

2
W and using the integral formulas in the Appendix, the

integral Iµν can be easily performed, leading to the result

Iµν = −i
gµν

64π2M2
W

. (11.22)

With the help of the identity

γλγµγρ = gλµγρ + gµργλ − gλργµ + iελµραγ5γ
α , (11.23)
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one gets

gµνT
µν = 4 [ū(s)γλ(1 − γ5)v(d)] [v̄(s)γλ(1 − γ5)u(d)]

=⇒ 4 Θ|∆S|=2 , (11.24)

where Θ|∆S|=2 ≡ [s̄γλ(1 − γ5)d] [s̄γλ(1 − γ5)d] .

The spinors u and v have been replaced by the corresponding quark fields,

so that an effective operator on the Hilbert space, H
|∆S|=2
a , may be obtained

from the transition amplitude. Similarly, one may calculate the effective
operator corresponding to the process represented in Fig. 11.1b. It turns out

to be exactly equal to H
|∆S|=2
a . Putting together (20), (22), and (24), the full

interaction operator with only u quark in the intermediate states is simply

H(2) = 2H |∆S|=2
a =

G2
F

4π2
(V ∗

udVus)
2M2

W Θ|∆S|=2 , (11.25)

where g2/8M2
W = GF/

√
2 is used.

The calculation of ∆m then boils down to the calculation of the matrix
element of Θ|∆S|=2 between states K0 and K

0
. We will calculate it in the

vacuum insertion approximation, which implies keeping the vacuum as the
only intermediate state. First, using Fierz’s rearrangement (Appendix), the
operator Θ|∆S|=2 can also be written as

s̄aγµ(1 − γ5)da s̄bγ
µ(1 − γ5)db = s̄aγµ(1 − γ5)db s̄bγ

µ(1 − γ5)da , (11.26)

where a, b = 1, 2, 3 label the quark colors. The minus sign in the Fierz’s
transformation combined with the anticommutation rules for the fermionic
field operators yields a positive sign in (26). Now we insert |0〉〈0| between
the two bilinear spinor products in all possible ways and define

〈

0 |Aµ
ab |K0

〉

≡
〈

0 | sbγ
µγ5da |K0

〉

=
〈

0 | sbγ
µγ5ua |K+

〉

=
ifK q

µ

√
2mK

δab

3
, (11.27)

where the decay constant of the K meson, fK ≈ 160 MeV, is extracted
from the K+ → µ+ + νµ rate, like fπ ≈ 131 MeV from π+ → µ+ + νµ

(Chap. 10). The denominator
√

2mK comes from the K meson one-particle
state normalization. We obtain in the vacuum insertion approximation

〈

K0
∣

∣

∣Θ|∆S|=2
∣

∣

∣K
0
〉

=
2

3

f2
Km

2
K

2mK
. (11.28)

In (28), the factor 2
3 = 1

2 (1 + 1
3 ) comes from the rearrangement of the color

indices by using (26) and (27).
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If the vacuum insertion approximation is relaxed, the result must be
modified, but the necessary changes may be simply parameterized by a mul-
tiplicative B factor, so that (28) may be replaced by

〈

K0
∣

∣

∣Θ|∆S|=2
∣

∣

∣K
0
〉

=
2

3

f2
Km

2
K

2mK
B , (11.29)

B = 1 corresponds to the vacuum insertion (28). In a wide variety of models
and in lattice gauge calculations, estimates for B differ from 1, within a factor
of two. From (18), (25), and (29) we obtain the expression for ∆m:

∆m = Re

{

G2
F

6π2
(V ∗

udVus)
2 f2

KmKM
2
W

}

B . (11.30)

The resulting value for ∆m is larger than the measured value by a factor of
3×103. Clearly, something is fundamentally wrong, not so much with letting
B ≈ 1 as with neglecting the presence of other quarks, and especially of the
c quark in the intermediate states. This oversight can be easily amended.

From the unitarity of the CKM matrix (Chap. 9), the matrix elements
that are relevant to our calculation satisfy the relation

V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = 0 . (11.31)

Neglecting the last term, which is actually very small, being of the order of
10−4, this relation yields

V ∗
udVus = −V ∗

cdVcs . (11.32)

This equation indicates there is a destructive interference between the u and
c quarks in the transitions under consideration, an effect that will drastically
reduce ∆m to the level actually observed. It is precisely this interference
effect between the u and c quarks in their actions in weak processes that
underlies the GIM mechanism (Chap. 9). With (32), keeping both u and c
quarks in the intermediate states has the effect of replacing in (19) the factor

[

1

k2 −m2
u

]2

by

[

1

k2 −m2
u

− 1

k2 −m2
c

]2

.

Therefore, the old expression (22) for the integral Iµν is now replaced with

I(u,c)
µν ≡

∫

d4k

(2π)4
kµkν(m2

c −m2
u)2

(k2 −m2
u)2(k2 −m2

c)
2(k2 −M2

W)2
. (11.33)

With mu � mc �MW , I(u,c)
µν =

−i gµν

64π2

m2
c −m2

u

M4
W

, (11.34)
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from which we finally get

∆m = Re

{

G2
F

6π2
(V ∗

cdVcs)
2f2

KmK (m2
c −m2

u)

}

B . (11.35)

It is the GIM mechanism that allows replacing M2
W in (30) with m2

c −m2
u

in (35), making possible a correct prediction for ∆m, with mc ≈ 1.5 GeV.
Historically, Gaillard and Lee exploited this mechanism to predict the mass
of the c quark before the discovery of the charmomium J/ψ in 1974. Let
us also note that if u and c quarks are mass-degenerate, mu = mc, the
suppression effect of the GIM mechanism would be complete, and ∆m would

vanish and there would be no transitions between K0 and K
0

at all. This
suppression can be easily understood in the framework of the standard model
of the electroweak interaction. We saw in Chap. 9 that if the Q = 2/3 quarks
(u, c, and t), or alternatively the Q = −1/3 quarks (d, s, and b), were
mass-degenerate, there would be no need for a CKM mixing matrix, and
there would be no flavor mixing between quarks having the same charge.
More precisely, in that case each up-type quark would couple only to its own
down-type weak-isospin partner by the charged currents, so that cross-family
couplings would be completely absent, i.e. Vus = Vcd = 0.

As already mentioned, the GIM mechanism, which was invented primar-
ily in order to suppress the flavor-changing neutral currents at the tree level,
is still potent in higher-order loop diagrams. Processes depicted by the box
diagrams in Fig. 11.1 are examples of its power.

Finally, let us examine the contributions of the top quark to ∆m. A
rough estimate using (35), with parameters for t replacing those for c, shows
that a top quark mass of about 180 GeV, large as it is, cannot compensate for
the smallness of the CKM matrix elements V ∗

tdVts to yield a significant con-
tribution to ∆m. The exact unitarity of VCKM and a more careful calculation
in the Rξ gauge, keeping xc ≡ m2

c/M
2
W, xt ≡ m2

t/M
2
W, lead to

∆m = Re
{G2

F

6π2
f2
KmKm

2
c

[

(V ∗
cdVcs)

2g(xc) + (V ∗
tdVts)

2 xt

xc
g(xt)

+2 (V ∗
tdVtsV

∗
cdVcs)h(xc, xt)

]}

B , (11.36)

where the functions g(x) and h(x, y) are given by1

g(x) =
1

4
+

9

4(1 − x)
− 3

2(1 − x)2
− 3

2

x2

(1 − x)3
logx −→

x→0
1 ,

h(x, y) = y

{

logx

x− y

[

1

4
+

3

2(1 − x)
− 3

4(1 − x)2

]

+ (x↔ y)

− 3

4(1 − x)(1 − y)

}

−→
x,y→0

0 . (11.37)

1 Inami, T. and Lim, C. S., Prog. Theor. Phys. 65 (1981) 297; ibid. 65
(1981) 1772 (E)



11.5 CP Violation 389

We note that in the Rξ gauge, besides the contributions of the W± weak
boson (Fig. 11.1), in the box diagrams there are also contributions from the
would-be Goldstone unphysical scalar bosons w± (those absorbed by W± to
become massive). Since the coupling of these internal w± to the fermions
Qi = u, c, t is proportional to the Qi mass, the role of the top is dominant in
these w± contributions. Nevertheless, the top overall part amounts to only
8% of that of the c quark. Terms proportional to V ∗

udVus, which one expects
to appear in (36), has been eliminated by the unitarity relation (31).

11.5 CP Violation

Discrete symmetries C, P, and T in particle physics have been discussed in
Chap. 5. As explained there, the CPT theorem implies that T invariance in
strong and electromagnetic interactions is equivalent to CP conservation in
these interactions. The simplest test of the CPT theorem is the equality of
the masses of a particle and its antiparticle, and the best test comes from the

mass difference between K0 and K
0

which may be related to ∆m :

mK0 −m
K

0

mK0

≈ ∆m

mK0

≈ 9 × 10−19 .

Any such difference contributes to the CP-violating parameter ε which we
will introduce later. After the discovery in 1956 of the maximum P and C
violation in weak interactions, physicists still believed that T (or CP) were
nevertheless invariant in weak interactions, as in the strong and electromag-
netic interactions. Imagine the great surprise when CP violations in weak
decays of the neutral K system was discovered in 1964.

The standard electroweak Lagrangian with three quark families provides
a natural framework for CP violation through the Kobayashi–Maskawa (KM)
nonzero phase in the CKM quark mixing matrix. As remarkably shown
by KM, the two left-handed doublets (u, d′′) and (c, s′′) that GIM used to
cancel strangeness-changing neutral current are not enough to incorporate
a complex phase in the quark flavor mixing matrix in order to have CP
violation. With N quark families, the number of measurable nonzero phases
is 1

2 (N −1)× (N−2) according to the discussion after (9.177). Thus N must
be larger than 2 to yield a nonzero phase, i.e. at least a third doublet (t, b′′)
is needed. It is noteworthy that this observation was made by KM in 1973
even before charm was discovered. We will call this KM theory the standard

CP-violating mechanism.

11.5.1 General Formalism

As we have seen in the previous sections, K0 and K
0

are mixed by the weak
interaction. Thus, in the presence of this type of interaction, the two states
are inseparable; they form a basis for a two-dimensional subspace. Similarly,
KS and KL form another, equivalent basis of the same space.
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We may then write, for example,

∣

∣K0
〉

=

(

1
0

)

,
∣

∣

∣K
0
〉

=

(

0
1

)

. (11.38)

Let ψ(t) be an arbitrary state of such space,

|ψ(t)〉 = A(t)
∣

∣K0
〉

+ B(t)
∣

∣

∣K
0
〉

=

(

A(t)
B(t)

)

. (11.39)

The Hamiltonian in (17) may be split into two parts; one, H(0), conserves
strangeness (strong and electromagnetic interactions), and the other, H(2),
violates strangeness by |∆S| = 2. Their sum H = H(0) + H(2) should be
non-Hermitian and therefore may be decomposed into a Hermitian and an
anti-Hermitian part, responsible respectively for the mass and the width of
unstable particles

〈j|H |k〉 = Mjk − i

2
Γjk. (11.40)

In the two-dimensional space under consideration, H has the matrix repre-
sentation

H ≡
(

M11 − i
2Γ11 M12 − i

2Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)

=

(

〈K0|H(0)|K0〉 〈K0|H(2)|K0〉
〈K0|H(2)|K0〉 〈K0|H(0)|K0〉

)

. (11.41)

CPT invariance of H implies thatM11 = M22 ≡M0, withM0 = mK0 = m
K

0 ,
and Γ11 = Γ22 ≡ Γ0, with Γ0 identified with the (common) total decay width

of K0 or K
0
. Since by construction, both M and Γ are Hermitian, M0 and

Γ0 are both real numbers, and M21 = M∗
12 and Γ21 = Γ∗

12. Hence

H ≡
(

M0 − i
2
Γ0 M12 − i

2
Γ12

M∗
12 − i

2
Γ∗

12 M0 − i
2
Γ0

)

. (11.42)

If H(2) is invariant under time reversal T, or equivalently under CP, one has
M21 = M12 and Γ21 = Γ12, from which M∗

12 = M12 and Γ∗
12 = Γ12, i.e. these

matrix elements are real. On the other hand, if T (or equivalently CP) is
not a symmetry of H(2), one may either have M21 6= M12 or Γ21 6= Γ12, or
both possibilities. This implies either M12 or Γ12, or both, may be complex.

We proceed now to determine the physical eigenstates KL and KS having
respective masses mL and mS and full widths ΓL and ΓS. Diagonalization of
(42) immediately gives

KL =
1

√

1 + |ε̄|2

(

K0 + K
0

√
2

+ ε̄
K0 − K

0

√
2

)

≡ K0
2 + ε̄K0

1
√

1 + |ε̄|2
,

KS =
1

√

1 + |ε̄|2

(

K0 − K
0

√
2

+ ε̄
K0 + K

0

√
2

)

≡ K0
1 + ε̄K0

2
√

1 + |ε̄|2
. (11.43)
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We have re-expressed KL and KS in terms of K0
1 and K0

2, the even- and
odd-CP states already defined before. The parameter ε̄ is given by

ε̄ =

√

M12 − i
2Γ12 −

√

M∗
12 − i

2Γ∗
12

√

M12 − i
2Γ12 +

√

M∗
12 − i

2Γ∗
12

≡ p− q

p+ q
. (11.44)

If CP is conserved, the quantities M12 and Γ12 are real, as mentioned above,
and therefore ε̄ vanishes. Then, KS = K0

1 and KL = K0
2, and there is no

mixing between K0
1 and K0

2. Such a mixing can occur only if CP is a broken
symmetry. In general, the eigenvalues of M − iΓ/2 corresponding to (43) are

mL − i

2
ΓL = M0 −

i

2
Γ0 +

√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗

12

)

,

mS − i

2
ΓS = M0 −

i

2
Γ0 −

√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗

12

)

, (11.45)

from which

(mL−mS)+
i

2
(ΓS−ΓL) = 2

√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗

12

)

≡ 2pq .(11.46)

If CP is conserved, this result becomes

∆m ≡ (mL −mS) = 2M12 , ∆γ ≡ (ΓS − ΓL) = −2Γ12 . (11.47)

Let us now turn to the CP violation in neutral K mesons. In 1964,
Christensen, Cronin, Fitch, and Turlay observed that KL decays not only
via the three-pion mode, KL → 3π, which was natural given its CP parity,
but also via the two-pion mode, KL → 2π, which was truly unexpected. To
make sure that it was the KL and not the regenerated KS that provoked
the observed events, they surrounded the KL beam with a great quantity of
helium to eliminate any possible regeneration of KS.

Since the same particle, KL, can decay through two channels of opposite
CP parities, it is clear that CP symmetry is violated in the pionic decay
modes of KL. This experiment is comparable in nature and significance to
another result obtained eight years earlier, when it was realized that another
K meson, the charged K+, could also decay through two different channels,
K+ → π+π0 and K+ → π+π+π− (or π+π0π0). Now, a two-pion state in the
s-wave is parity-even, while a three-pion state with zero angular momentum is
parity-odd. Therefore, parity (space inversion) symmetry must be broken in
these decay modes of K+. Of course, the discovery of parity violation in weak
decays was one of the most important events in modern physics (Chap. 5).
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But while parity suffers maximal breakdown in weak processes (for exam-
ple, in K+ to 2π and 3π, the branching ratios are comparable in magnitudes
after phase-space corrections), CP symmetry is only slightly broken (the KL

to 3π mode clearly dominates the 2π mode). In any case, violation of P, C,
and CP symmetries by the weak interaction is a well-established fact.

CP violation manifests itself through the presence of a nonvanishing
complex quantity ε̄ which may be estimated from the branching ratios

ρ ≡ Γ(KL → π+π−)

Γ(KS → π+π−)
=

Br(KL → π+π−)

Br(KS → π+π−)

(

τS
τL

)

≈ 5.1× 10−6 , (11.48)

which gives |ε̄| ≈ √
ρ = 2.25 × 10−3. To obtain the complex phase of ε̄, we

may proceed through (44) which takes the form

ε̄ =
p− q

p+ q
=

p2 − q2

4pq + (p − q)2
≈ p2 − q2

4pq
, (11.49)

where the magnitude |ε̄| ≈ 10−3 justifies dropping the quadratic term (p−q)2,
which yields the approximation

ε̄ ≈ i
Im(M12) − i

2Im(Γ12)

∆m+ i
2∆γ

. (11.50)

Again, with |ε̄| ≈ 10−3, one may deduce

Im(M12)

Re(M12)
� 1 ,

Im(Γ12)

Re(Γ12)
� 1 . (11.51)

Hence, to a very good approximation, (46) yields

∆m = 2 Re(M12), ∆γ = −2 Re(Γ12) . (11.52)

On the other hand, as the ratio ∆m/∆γ = 0.477 is experimentally known,
we may write

i

∆m+ i
2∆γ

=
ei(43.37)◦

√
2.098 ∆m

≈ eiπ/4

√
2 ∆m

, (11.53)

and the approximate expression for ε̄, (50) becomes

ε̄ ≈ eiπ/4

√
2 ∆m

[

Im(M12) −
i

2
Im(Γ12)

]

. (11.54)

In order to determine the phase of ε̄, or equivalently its real part, we con-
sider again the charge asymmetry δ(t) as defined in (14). This quantity was
previously obtained assuming exact CP conservation, i.e. with KL = K0

2 and
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KS = K0
1. Now, in the presence of CP violation, one should replace KL and

KS by their exact expressions (43). This replacement transforms (14) into

δ(t) = 2
[

Re(ε̄) + e−(ΓS+ΓL) t
2 cos(∆mt)

]

, (11.55)

which includes the CP violation effect. This result tells us that at t ≈ τS the
time oscillation yields a measure of ∆m, while at t � τS the amplitude of
δ(t) directly yields Re(ε̄). Figure 11.3 clearly shows the nonvanishing value
of Re(ε̄). We may understand the above result as follows: at large t only

KL survives; because of CP violation as shown in (43), K0 and K
0

exist in
unequal proportions in KL, and their difference is given by 2ε̄.

11.5.2 Model-Independent Analysis of KL → 2π

Let us now examine in some detail the CP-violating modes KL → π+ + π−

and KL → π0 +π0. The eigenstates (43) indicate that there are two possible
not mutually exclusive scenarios in which these decays may proceed.

First, it is the K0
2 component of KL itself that decays into two pions.

As K0
2 and ππ states have opposite CP parities, this decay mode can occur

only if the transition violates CP symmetry. As this is a direct violation
by the amplitude itself, the effective coupling strength for this interaction
is of the order of 10−3 of the strength of the CP-conserving interaction. It
is a |∆S| = 1 transition and is referred to as a milliweak transition. In
KL → π + π, its effects are parameterized by a quantity called ε′ defined
later.

In the second scenario, the decay KL → π + π is viewed as being due
to the ε̄K0

1 component, with ε̄ 6= 0. In contrast to the first scenario, in this
case the decay amplitude, which is that of K0

1 → ππ multiplied by ε̄, exactly
conserves CP. The CP violation actually observed in the KL decay stems from

the K0–K
0

mixing through the mass matrix in (41). It is this mass matrix
that violates CP. As the violation occurs through |∆S| = 2 transitions, which
are ∼ G2

F, Wolfenstein dubbed it superweak.
Of course, it is quite possible that the CP violation in KL → π + π

proceeds via both scenarios. Actually, it is what happens in the standard

CP-violating mechanism defined earlier. The two scenarios are represented
by the diagrams in Fig. 11.4.

..................................................................................................................... .....................................................................................................................................................................................................•
KL = K0

2

•••

Direct CP violation in amplitude

milliweak : ∆S = 1

π

π

ε
′

.........
..........
.........
.........
.........
..........
.........
.........
.........
..........

.............................................................................................

..................................................................................................................... ....................................................................................................... .....................................................................................................................................................................................................•
KL εK0

1

•••

CP violation in mass matrix

superweak : ∆S = 2

π

π

ε
.........
..........
.........
.........
.........
..........
.........
.........
.........
..........

.............................................................................................

Fig. 11.4. Two scenarios of CP violation in KL → 2π
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In order to show how experiment may bring out these two scenarios, let
us introduce the following complex quantities which give the ratios of the
two-pion decay amplitudes of KL and KS :

η+− ≡ |η+−|eiφ+− ≡ A(KL → π+π−)

A(KS → π+π−)
,

η00 ≡ |η00|eiφ00 ≡ A(KL → π0π0)

A(KS → π0π0)
. (11.56)

We will discuss how their complex phases and their magnitudes can be deter-
mined. In particular, a very precise measure of their magnitudes will teach
us a great deal about the nature and the mechanism of the CP violation.

A method used in such experiments is based on the interference phe-
nomenon, analogous to the one considered in Sect. 11.2. At time t = 0, a
beam of pure K0 mesons is produced. Using (43), its amplitude of transition
into a 2π final state is given by

A(K0 → 2π) =

√

1 + |ε̄|2
2|1 + ε̄|2 [A(KS → 2π) + A(KL → 2π)] . (11.57)

The time evolution of KL and KS are

KS,L(t) = KS,L(0) exp

[−tΓS,L

2

]

e−i(mS,L)t . (11.58)

From (56), the t-dependence of the probability for the π+π− or 2π0 mode is

Iππ(t) = Iππ(0)
[

e−ΓSt + |η|2e−ΓLt +2|η|e−(ΓS+ΓL) t
2 cos(∆mt−φ)

]

.(11.59)

As ∆m is already known from independent measurements (Sect. 11.2), ob-
servation of the oscillations of Iππ(t) for t of the order of a few τS yields the
phase φ, while for t� τS, when the first term in (59) has died down, one can
make a measure of |η|. Data from the two most recent experiments give

φ+− = (46.9± 2.2)◦ CERN ,
φ+− = (43.53± 0.97)◦ FNAL ,
φ00 = (47.1± 2.8)◦ CERN ,

∆φ ≡ φ00 − φ+− = (0.62± 1.03)◦ FNAL ,

| η00

η+− | = (0.9931± 0.002 CERN ,

| η00

η+− | = (0.9904± 0.0084± 0.0036) FNAL .

In order to show how these results serve to distinguish the two CP-violating
scenarios, we have to make a detailed analysis of the decay amplitudes. The
final products of K0 decays, π+π− and 2π0, have only zero orbital angular
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momentum (s-wave). These two pions cannot have isospin 1 (forbidden by
Bose statistics) but may have isospin 0 or 2. The isospin decomposition of the
decay amplitudes may be written down with the help of the Clebsch–Gordan
coefficients as follows:

A(K0 → π+ + π−) =
1√
3
[A2 +

√
2A0] ,

A(K0 → π0 + π0) =
1√
3
[
√

2A2 −A0] , (11.60)

where A0 and A2 are respectively weak decay amplitudes into isospin I = 0
and isospin I = 2 states of the two-pion system:

A0 ≡ 〈ππ, I = 0|Hw|K0〉 , A2 ≡ 〈ππ, I = 2|Hw|K0〉 . (11.61)

As K0 has isospin 1/2, the matrix element A2 is nonvanishing only if Hw be-
haves as an isospin I = 3/2 or I = 5/2 operator. Similarly, for a nontrivial A0,
Hw must transform as an isospin I = 1/2 operator. Now, from the empirical
rule of isospin weak transitions ∆I = 1/2 (Chap. 6), one should expect a1/2 =
〈

β
∣

∣

∣H
I=1/2
w

∣

∣

∣α
〉

to be substantially larger than a3/2 =
〈

β
∣

∣

∣H
I=3/2
w

∣

∣

∣α
〉

. In

fact, it is found in various hadronic decays of strange particles α into non-
strange particles β that their ratio, |a1/2/a3/2|, varies between 15 and 30. It
follows that |A0| � |A2|. From KS → π+π− and KS → π0π0 experimental
data, one gets |A0/A2| ≈ 22.

From our previous discussion, it is expected that in the case of exact
CP symmetry, A0 and A2 may be taken to be real, or more exactly their
relative phase may be chosen to be zero. But if CP symmetry is broken and
if this symmetry breakdown resides in the decay amplitude, as the case of
the first scenario, the isospin amplitudes AI are in general complex. This
implies necessarily complex matrix elements Γ12, i.e. ImΓ12 6= 0.

Now for the K
0

case, the corresponding two-pion K
0

decay amplitudes
can be obtained from (60) by assuming exact CPT symmetry. Let us define

Ā0 ≡ 〈ππ, I = 0|Hw|K
0〉 , Ā2 ≡ 〈ππ, I = 2|Hw|K

0〉 . (11.62)

Upon CPT transformations, |K0〉 7→ −〈K0|, 〈ππ, I = 0| 7→ |ππ, I = 0〉, and
〈ππ, I = 2| 7→ |ππ, I = 2〉, the assumed CPT symmetry of Hw yields

Ā0 = −A∗
0 , Ā2 = −A∗

2 ; (11.63)

then from (60), the K
0

decay amplitudes are

A(K
0 → π+π−) = − 1√

3
[A∗

2 +
√

2A∗
0 ] ,

A(K
0 → π0π0) =

1√
3
[−

√
2A∗

2 +A∗
0 ] . (11.64)
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It remains to include the effects of the final-state strong interaction that
acts between the π mesons in the final states, i.e. the decay products of the
KL. These effects are parameterized, as usual, by the pion–pion scattering
phase-shifts δ0(mK ) and δ2(mK) for isospin I = 0 and I = 2 respectively.
These pion–pion phase-shifts are measured and known. With these strong
interaction effects included, the four relevant amplitudes are

√
3A(K0 → π+π−) =

[

eiδ2A2 +
√

2 eiδ0A0

]

,

√
3A(K0 → π0π0) =

[√
2 eiδ2A2 − eiδ0A0

]

,

√
3A(K

0 → π+π−) = −
[

eiδ2A∗
2 +

√
2 eiδ0A∗

0

]

,

√
3A(K

0 → π0π0) =
[

−
√

2 eiδ2A∗
2 + eiδ0A∗

0

]

. (11.65)

Re-expressing K0 and K
0

in terms of KL and KS, one gets

η+− = ε+ ε′ , η00 = ε− 2ε′ , with (11.66)

ε = ε̄+ i
Im(A0)

Re(A0)
, and (11.67)

ε′ =
i w√

2
ei(δ2−δ0)

[

Im(A2)

Re(A2)
− Im(A0)

Re(A0)

]

, (11.68)

where w = ReA2/ReA0 ≈ |A2/A0| ≈ 1/22.
From the above results we learn the following. First, observation of CP

violation effects generally involves two interfering transition amplitudes; for
ε′, it is the interference between A0 and A2, while for ε, it is the interference

between the amplitudes K0 → 2π and K
0 → 2π through ε̄. Second, the

parameter ε′ stems exclusively from the first scenario through nonzero values
of ImA0 or ImA2, or of both of them. With (68), the phase of ε′ as taken from
(i ei(δ2−δ0)) is π

2 + δ2 − δ0. Since both δ2 and δ0 are experimentally known,
the phase of ε′ is 48◦ ± 4◦. In fact, the direct CP violation through the first
scenario is completely determined from the knowledge of η+− − η00 = 3ε′

and |η00/η+−|2 = 1 − 6 Re(ε′/ε). Due to an unfortunate circumstance, ε′ is
strongly suppressed by w, reduced by the ∆I = 1/2 rule (Chap. 6), and also
by a possibly small difference (ImA2/ReA2)−(ImA0/ReA0). Note that while
A2 � A0, the ratios of their imaginary/real parts may be comparable, since
ReA2 is in the denominator. From available data on η+− and η00, one has

|ε′/ε| = 0.00074± 0.00059 FNAL, E731 ,
0.0023± 0.00065 CERN, NA31 . (11.69)

The question of whether ε′ vanishes or not is still inconclusively answered.
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Finally, from the ∆I = 1/2 rule, the isospin scalar amplitude predomi-
nates in K→ 2π, hence the CP-violating component in Γ12, i.e. Im Γ12 must
come mainly from ImA0, so that

Im(Γ12) ≈ ΓS
Im(A0)

Re(A0)
≈ 2∆m

Im(A0)

Re(A0)
. (11.70)

Substituting this result for Im Γ12 in the expression (54) for ε̄, and using (67),
one gets

ε = ε̄+ i
Im(A0)

Re(A0)
≈ eiπ/4√

2

[Im(M12)

∆m
− i

Im(A0)

Re(A0)

]

+ i
Im(A0)

Re(A0)

≈ eiπ/4√
2

[ Im(M12)

2 Re(M12)
+

Im(A0)

Re(A0)

]

. (11.71)

The expressions for ε′ and ε given in (68) and (71) have the following impor-
tant property. As a general rule in physics, the absolute phase of an isolated
amplitude has no physical meaning; it is only when it is measured relatively
to the phase of another amplitude that it takes on a meaning. Therefore,
to see whether there are actually CP violation effects or not, it is necessary
to determine the relative phase of two interfering amplitudes in some appro-
priate weak transition. Also the absolute phase of a state function has no
physical meaning, thus one expects that making the changes

K0 → eiαK0, K
0 → e−iαK

0
or equivalently,

Im(A0,2)

Re(A0,2)
→ Im(A0,2)

Re(A0,2)
+ α ,

Im(M12)

Re(M12)
→ Im(M12)

Re(M12)
− 2α , (11.72)

would leave ε and ε′ unchanged. This is indeed the case, which shows that
these parameters are physically meaningful and truly represent the CP vio-
lation effects in K decays.

The phenomenological model-independent analysis given above is served
to confront experimental data with different CP-violating mechanisms pro-
vided by theoretical models. These theories must give predictions for Im(M12)
and Im(Γ12) (or Im (A0,2)) from which we obtain ε and ε′.

In the standard model we will show that the gluonic penguin diagram
implies ImA0 6= 0, i.e. direct CP violation in the decay amplitude (first
scenario). Thus a measure of ε′ through that of η+−/η00 is crucial for the
validity of the standard KM mechanism of CP violation, which predicts a
small but nonvanishing value of ε′. An exactly vanishing value of ε′ would be
a fatal blow to this standard KM mechanism.

In the second scenario (superweak) discussed below, CP violation in
KL → 2π is only due to an unknown mechanism which has, by assumption,
an effective ∆S = 2 complex mass matrix element M12. This complex M12,
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put in by hand to fit KL → 2π data, is translated into an effective ε 6= 0.
In superweak model, except in the neutral K meson system, the discrete
symmetry CP is nowhere violated. This scenario is completely different from
the standard KM nonzero phase of the electroweak theory which predicts
that, outside the K meson system with nonzero ε′, large CP violations are
expected in many decay channels of B mesons.

11.5.3 The Superweak Scenario

As already mentioned, the decay amplitudes in the second scenario are CP
conserving. It is only because of ε̄ 6= 0 that KL → 2π. In this case, the
amplitudes A0 and A2 can be taken as real, so ε′ is identically zero. The CP
violation observed in KL decay would arise from the K0

1–K0
2 mixing through

a complex mass matrix element M12. Note that Γ12 is, in contrast, a real
number.

The K0
1–K0

2 mixing may be calculated as

〈K0
1|Hw|K0

2〉 =

(

1√
2

)2

〈K0 − K
0|Hw|K0 + K

0〉

= 1
2

[

〈K0|Hw|K
0〉 − 〈K0|Hw|K0〉

]

= 1
2 (M12 −M∗

12) = i Im(M12) . (11.73)

Since ImA0 = 0 and Im Γ12 = 0, this yields, through (54) and (67),

|ε| = |ε̄| =
Im(M12)√

2∆m
, ε′ = 0 . (11.74)

Since ∆m is of the order of G2
F, the superweak mixing matrix Im (M12) is

further reduced below this level by ε. The effective coupling strength of the
superweak, which is proportional to Im (M12), has roughly the magnitude of
|ε|GFm

2
c/6π

2 ≈ 10−10 compared to weak interaction strength ∼ GF. Never-
theless, the superweak interaction may still manifest itself through the mixing
factor ε̄ because in (74), the denominator ∆m is also very small.

In this second scenario, all CP violation effects depend on the single
parameter ε̄. It predicts

η+− =
〈π+π−|KL〉
〈π+π−|KS〉

=
〈π+π−|ε̄K0

1〉
〈π+π−|K0

1〉
= ε̄ , (11.75)

η00 =
〈π0π0|KL〉
〈π0π0|KS〉

=
〈π0π0|ε̄K0

1〉
〈π0π0|K0

1〉
= ε̄ , (11.76)

so η+− = η00 and φ+− = φ00 = φε̄ = arctan
2∆m

∆γ
= (43.37± 0.2)◦. (11.77)

To date, all data on η+−|, |η00|, φ+−, and φ00 are consistent with the su-
perweak scenario. This mechanism also makes the prediction that KL → 2 π
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and KS → 3 π give rise to quantitatively equal CP violation effects:

η+−0 ≡ 〈π+π−π0|KS〉
〈π+π−π0|KL〉

= ε̄ = η000 ≡ 〈π0π0π0|KS〉
〈π0π0π0|KL〉

. (11.78)

So η+− = η00 = η+−0 = η000. Unfortunately, the three-pion KS decay
modes are extremely difficult to detect because they are suppressed by the
smallness of the CP symmetry breakdown (10−3) and by the reduction of the
available phase space in the final state.

As shown in the next subsection, the standard model also gives results
for ε close to the data, although, as already noted, CP violation operates
through both scenarios and ε′ 6= 0 is predicted.

11.5.4 Calculations of ε and ε′ in the Standard Model

In order to obtain ε and ε′, defined in (68) and (71), we compute the quantities
M12, A0 and A2. Let us first introduce the Wolfenstein parameterization
of the CKM matrix (VCKM) which is particularly suitable for CP violation
analyses.

As in any version, VCKM possesses four parameters: three Euler angles
and one phase. Wolfenstein’s version expands the matrix elements in power
of λ = sin θC = 0.2205 ± 0.0018 (θC is the Cabibbo angle). The other three
parameters are A , ρ , and η. To order λ3 for the real parts and order λ4 for
the imaginary parts, VCKM reads







1 − λ2

2
λ Aλ3[ρ− iη(1 − λ2

2
)]

−λ 1 − λ2

2 − iηA2λ4 Aλ2(1 + iηλ2)

Aλ3(1 − ρ− iη) −Aλ2 1






. (11.79)

The parameter η represents the complex phase responsible for CP violation.
A, ρ, and η can be extracted from data on B meson decays (see Chap. 16),

with the results: A = 0.794± 0.054,
√

ρ2 + η2 = 0.363± 0.073.

Calculation of ε. Contributions to the matrix elementM12 in the standard
model are represented by diagrams in Fig. 11.1. As expressed by (52), its
real part, ∆m/2, has been calculated in (36), with the final result obtained
by taking the real part of a certain complex expression. Up to a factor of 2,
due to the uncertainty of the parameter B in (35), the imaginary part is

Im(M12) =
G2

F

12π2
f2
KmKm

2
c

{

g(xc) Im(V ∗
cdVcs)

2 +
xt

xc
g(xt) Im(V ∗

tdVts)
2

+ 2h(xc, xt) Im(V ∗
tdVtsV

∗
cdVcs)

}

B , (11.80)

where g(x) and h(x, y) are known from (37). Therefore, the calculation re-
duces to that of the product of four complex matrix elements V ∗

qdVqsV
∗
q′dVq′s.
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Let us start by studying some properties of the CKM matrix related to CP
violation. Define the product

∆γk ≡ VαiVβjV
∗
αjV

∗
βi , (11.81)

where (α, β, γ) = (1, 2, 3) ≡ (u,c,t) or any other cyclic permutation, and
similarly, (i, j, k) = (1, 2, 3) ≡ (d, s, b). These nine complex numbers ∆γk,
though very different in magnitudes and in their real parts, have exactly equal
imaginary parts. Their common imaginary parts will be denoted by J , from
Cecilia Jarlskog who was the first to point out this remarkable property. As
will be shown further on,

Im(∆γk) ≡ Im(VαiVβjV
∗
αjV

∗
βi) = J

∑

γ,k

εαβγεijk . (11.82)

The term J is a universal number in the sense that it does not depend on
how the CKM matrix is parameterized. It shares this property with |Vαi|.
In addition, J as well as |Vαi| are also invariant to the phase redefinition of
the quark fields that define the matrix representation, e.g. q → qeiθ implies
Vγk → Vγkei(θk−θγ). J is both invariant to phase redefinition of the quark
fields (called rephasing-invariant) and independent on the parameterization
of the CKM matrix. Since any physical quantity that violates CP symmetry
is proportional to J , that quantity must equally possess these properties.

The reason all nine ∆γk have the same imaginary part can be seen as
follows. First multiply both sides of the unitarity relation

VαiV
∗

αj = −
∑

δ 6=α

VδiV
∗

δj , with i 6= j , (11.83)

by VβjV
∗

βi, and using the cyclic character of the indices, the ∆γk in (81) is
transformed into

∆γk = −∆∗
αk − |Vβi|2|Vβj |2 . (11.84)

From (84) it is evident that the nine ∆γk have equal imaginary parts, and
that there exists just one independent ∆γk, the other eight being expressible
in terms of it and of the magnitudes of the CKM matrix elements. The
common imaginary part is given by

J = A2λ6η , or J = |(c13)
2 c23 c12 s12 s13 s23 sin δ13| (11.85)

in the Wolfenstein’s version or in the version (9.178) of VCKM.
It can also be shown that J is given by twice the area of any one of the

six triangles defined by the following six unitarity relations: three obtained
by fixing any two columns i and j, and three others obtained by fixing any
two rows β and γ :

3
∑

α=1

i6=j

VαiV
∗

αj = 0 ,

3
∑

k=1

β 6=γ

VβkV
∗
γk = 0.
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These six relations may be represented by six triangles in the complex plane.
For example, the three complex numbers considered as vectors A1 = V11V

∗
13,

A2 = V21V
∗
23, and A3 = V31V

∗
33, which sum up to zero, define one such

triangle. They are called unitarity triangles, their significance to heavy flavor
physics will be discussed later in Chap. 16.

Although very dissimilar in their shapes, all those triangles have equal
areas, given by 1

2 |A1||A2| sin(A1 ·A2), which is 1
2 Im[A1 ·A∗

2] = 1
2 Im ∆32 =

1
2 J . Just as the area of a triangle is given by the lengths of its sides, so J is
also given by the various |Vij|. In particular J vanishes if one of the nine Vij

does. Hence the necessary condition for CP violation (i.e. J 6= 0) is that none
of the nine matrix elements Vij is zero. Returning now to (80), we express
the three factors found in it as

Im(V ∗
cdVcs)

2 = −2J ,

Im(V ∗
tdVts)

2 = 2A2λ4(1 − ρ)J ,

Im(V ∗
tdVtsV

∗
cdVcs) = +J , (11.86)

where J = A2λ6η. From (54), (71), (80) and the above equation, one gets

|ε| = G2
Ff

2
Km

2
c mK

6
√

2π2∆m
J

[

−g(xc) +A2 λ4 (1 − ρ)
xt

xc
g(xt) + h(xc, xt)

]

B .(11.87)

We have approximated |ε| ≈ |ε̄| by neglecting Im(A0), i.e. by neglecting ε′ in
ε, [note that |ε′/ε| = O(10−4)]. Since J is small, it is not surprising that ε is
in agreement with experiment. With the ε measurement alone, the standard
KM mechanism cannot be differentiated from the superweak scenario, hence
the crucial role of ε′ for testing different CP-violating mechanisms.

How do we compute ε′ ? Whereas ε is related to the ∆S = 2 mixing
matrix M12 as depicted in Fig. 11.1, the parameter ε′ describes direct CP
violation with the ∆S = 1 transition s→ d shown in Fig. 11.5a. As will
be shown later, for large W boson mass, this diagram is equivalent to the
‘penguin’ diagram of Fig. 11.5b.

The calculation of ε′ is more subtle because it involves the amplitudes
A0 and A2, the first of which being dominant, according to the ∆I = 1/2
empirical rule. It will be seen later (Chap. 16) that QCD does indeed amplify
the I = 1/2 transitions at the expense of the I = 3/2 transitions, giving a
qualitative explanation for the ∆I = 1/2 rule. There are several reasons for
the penguin diagram to be the key to the calculation of A0, and hence to
direct CP violation in the amplitude (first scenario).

First, the transition s→d changes strangeness by one unit, exactly as
required by the first scenario.

Second, we will see later in (94) that the gluonic penguin operator has
the form αs[d̄γµ(1 − γ5)λ

js] [q̄γµλjq]. This is an I = 1/2 operator, because
it is the product of an I = 1/2 operator, d̄γµ(1 − γ5)λ

js, with an I = 0
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gluonic current q̄γµλjq. Thus the matrix element A0 of an I = 1/2 transition
is obtained. Let us mention in passing that A2 may be obtained from a
diagram similar to that in Fig. 11.5, with the gluon replaced by a photon or
a Z0 and is called electroweak penguin. Now there is an electromagnetic or
a weak neutral current of isospins 0 and 1 coupled to the I = 1/2 operator to
give, among others, isospin-3/2 transition and hence A2.

Finally, the penguin diagram involves the matrix elements V ∗
QdVQs for

Q= u, c, t; hence the A0 depends in particular on V ∗
cdVcs and V ∗

tdVts, and
so must be complex. These complex matrix elements give rise to direct CP
violation in the amplitude.
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Fig. 11.5. (a) s + q → d + q transition; (b) penguin: same as (a) but the W
propagator is squeezed into the point A; (c) Hglu

pen [see (93)] is a local operator
because the gluon propagator 1/k2 is compensated by k2 of the loop integral

11.5.5 The Gluonic Penguin and |ε′/ε|
To lowest order of the Fermi coupling GF, the flavor-changing neutral current
s → d is forbidden by the GIM cancelation mechanism (Chap. 9). Induced by
QCD, the s → d transition with one gluon emitted, as shown by Fig. 11.5a,
gives rise to an effective interaction Hglu

pen which yields CP violation in the
decay amplitude KL → 2π with a strength ∼ GFαs/π.

Our purpose is to compute this effective interaction Hglu
pen. As can be

shown below, the diagram 11.5a gives the same result as the diagram 11.5b,
once the sum over Q=u, c, t is performed to overcome the divergences in the
loop integrals of the diagrams 11.5a, b.

We first compute the Q quark loop represented by Fig. 11.5b. At the
gluon vertex (shown by B in Fig. 11.5b), there is a QCD quark current
Q̄γµT

jQ which contains the SU(3) color matrix T j ≡ 1
2
λj . On the other

hand, the weak interaction vertex (shown by A in Fig. 11.5b) is a four-point
vertex of the type [d̄γµ(1 − γ5)Q] [Q̄γµ(1 − γ5)s] which of course is a color
singlet. To calculate the effective interaction operator which is under consid-
eration, a trace over the color labels is to be taken in the quark loop integral.
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Since the expression of the transition amplitude contains an explicit color
matrix T j from the gluon vertex but none from the weak interaction four-
point vertex, it is convenient to make a decomposition of the color content
of the latter. This can be done with the help of the identity (Problem 11.5)

δehδgf =
1

3
δefδgh +

1

2

8
∑

j=1

(λj)ef(λj)gh , (11.88)

where e, f, g, h are color indices running from 1 to 3. Actually, this relation
is very useful in QCD corrections to weak decays, and we will exploit it again
in Chap. 16. Using (88) together with the Fierz rearrangement, we have

[d̄γµ(1 − γ5)Q][Q̄γµ(1 − γ5)s] =
1

3
[d̄γµ(1 − γ5)s][Q̄γ

µ(1 − γ5)Q]

+
1

2
[d̄γµ(1 − γ5)λ

js][Q̄γµ(1 − γ5)λ
j Q] . (11.89)

The current Q̄γµ(1− γ5)λ
jQ of the last term in (89) will couple to the QCD

current Q̄γµT
j Q and leads to a nonvanishing trace in color space.

For each internal quark line Q, one has the following contribution from
the loop where the external momenta of s and d are neglected, as in (19),

Γν
Q(k2) = i

( −ig

2
√

2

)2(
i

M2
W

)

(−igs)
1

2
[d̄ γµ(1 − γ5)λ

j s ] V ∗
QdVQs

× (−)

∫

d4p

(2π)4
Tr
[

γµ(1 − γ5)λ
j i

p/−mQ
γν T l i

p/− k/−mQ

]

.

Here (−igs) and (−ig/2
√

2) are the strong and weak coupling constants;
i/M2

W is the approximation of the W-boson propagator −i/(p2 −M2
W) when

we go from Fig. 11.5a to Fig. 11.5b. Its justification will be given later.
There is a minus sign due to the anticommutation rule of fermions in the
loop, and k is the gluon momentum. Setting g2/8M2

W = GF/
√

2 and using
Tr (λjλl) = 2δjl, the above expression becomes

Γν
Q(k2) =

GF√
2
(−igs) [d̄ γµ(1 − γ5)T

j s] V ∗
QdVQs I

µν
Q (k2) , (11.90)

where

Iµν
Q (k2) = (−1)

∫

d4p

(2π)4
Tr

[

γµ(1 − γ5)
i

p/−mQ
γν i

p/− k/−mQ

]

. (11.91)

Besides the factor (1−γ5) which is irrelevant because of the trace, the above
integral is familiar and will be discussed in Chap. 15, in relation with the
vacuum polarization and the running coupling. The divergent part Iµν

div of
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(91), coming from p �MW and p� mQ, turns out to be independent of Q.
It does not contribute to the transition amplitude because of the unitarity of
the CKM matrix, or the GIM cancelation mechanism:

∑

Q

V ∗
QdVQs I

µν
div = Iµν

div

∑

Q

V ∗
QdVQs = 0 .

Since the divergences in both diagrams of Fig. 11.5a and Fig. 11.5b vanish by
the GIM mechanism, the upper limit of their p-integrals can be taken at any
value lower than the W mass, and the substitution −i/(p2 −M2

W) by i/M2
W

is justified. The W mass plays the role of the momentum cutoff, this in turn
explains why the diagram 11.5a gives the same result as the diagram 11.5b.

Only the finite part of the integral (91) remains to be evaluated. The
calculation will be done in Chap. 15 and given in (15.6) and (15.30). The
dominant finite term can be directly taken from (15.6) which gives

Iµν
Q (k2) = −i(k2gµν − kµkν)

1

12π2
log

m2
Q

µ2
. (11.92)

In the course of the computation, a mass scale µ is introduced in (15.6) or
(92) for dimensional reason. However µ2 will disappear in the final result, as
can be seen below in (94). Once the loop integral is known, we attach (92)
to the external quark current qγνT

jq (indicated by C in Fig. 11.5b) via the
gluon propagator. Note that the first factor, k2gµν , when multiplied by the
gluon propagator −i/k2, yields a local operator, i.e. a k2-independent finite
term. The contribution of the second factor, kµkν, vanishes when it operates
on the conserved current q̄γνT

jq.
Finally, summation over internal quarks Q = u, c, t and application of

the unitarity of VCKM lead to the penguin operator

Hglu
pen =

GF√
2
(−igs) [d̄ γµ(1 − γ5) T

j s]
∑

Q=u,c,t

V ∗
QdVQs

1

12π2
log

m2
Q

µ2

× (−ik2gµν)

(−i

k2

)

(−igs) [q γν T
j q] , (11.93)

which can also be written as

Hglu
pen =

GF√
2

αs

12π

{

V ∗
tdVts log

m2
t

m2
c

− V ∗
udVus log

m2
c

m2
u

}

Open ,

Open = [d̄ γµ(1 − γ5)λ
j s] [q γµλj q] . (11.94)

Using V ∗
cdVcs = −{V ∗

tdVts + V ∗
udVus}, the term inside the curly brackets {} of

(94) is derived from the identity

∑

Q=u,c,t

V ∗
QdVQs log

m2
Q

µ2
= V ∗

tdVts log
m2

t

m2
c

− V ∗
udVus log

m2
c

m2
u

.
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As explicitly shown by (94), this effective s → d strangeness-changing neutral
current is a four-fermion operator in the bilinear form with a total isospin
I = 1/2, as explained earlier.

The calculation of the imaginary part of A0 ≡
〈

π(k)π(p)
∣

∣Hglu
pen

∣

∣K0(P )
〉

involves the consideration of the matrix element

〈

π(k)π(p)
∣

∣ [d̄γµ(1 − γ5)λ
j s] [q̄γµλjq]

∣

∣K0(P )
〉

. (11.95)

From (88), we write λjλj in the above equation as a product of the color
singlet currents, then applying a Fierz’s transformation on the latter, and
finally, using the factorization approximation in the calculation of the matrix
element [see Sect. 16.4, and (16.95) as an example], we estimate (95) to be

〈

π(k)
∣

∣ d̄γµγ5q
∣

∣0
〉 〈

π(p) | q̄γµs |K0(P )
〉

= fπkµ

[

(P + p)µf+(k2) + kµf−(k2)
]

= fπ

[

(m2
K −m2

π) f+(m2
π) +m2

π f−(m2
π)
]

≈ fπ(m2
K −m2

π) , (11.96)

the last line comes from f+(0) ≈ 1. All of these calculations lead to the result

Im(A0) ≈
GF√

2

αs

12π
fπ(m2

K −m2
π)Im(V ∗

tdVts) log
m2

t

m2
c

≈ GF√
2

αs

12π
fπ(m2

K −m2
π)A2λ5η log

m2
t

m2
c

. (11.97)

The term V ∗
udVus is real and does not contribute to Im (A0). With this result

for Im(A0) and the experimental value for ReA0 = 3.3 × 10−4 MeV taken
from the decay rate of KS → 2π, one gets ε′ from (68) using ω = 1/22 and
Im(A2) = 0. For another estimate of A0, see Problem 16.1.

Finally, from the measured value of |ε| = 2.258 × 10−3, one obtains
the ratio |ε′/ε| ≈ 10−3A2η. Thus the standard model predicts a small but
definitely nonzero ratio |ε′/ε| ≈ 10−4 with a large uncertainty by a factor of 3,
the uncertainty essentially comes from the difficult evaluation of the matrix
element in (95) because of its nonperturbative character. Nevertheless, this
prediction provides an important test of the CP violation in the KM fashion.
A ratio that is either vanishingly small or greater than about 10−3 would
indicate that this mechanism is inadequate and that an explanation beyond
the standard model is called for. Experimental measurements of ε′ are being
planned at CERN and FNAL. The ultimate accuracy of these experiments
would be better by an order of magnitude than (69), and may resolve this
important issue.
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Problems

11.1 CP-even and -odd eigenvalues of pions in K0 decay. We con-
sider the neutral K meson decays into pions. Show that the two-pion system
π0π0 and π+π− has even eigenvalue CP |ππ〉 = + |ππ〉. Also show that the
three-pion system π0π0π0 has odd eigenvalue CP

∣

∣π0π0π0
〉

= −
∣

∣π0π0π0
〉

.
How about the CP eigenvalue of π+π−π0 ?

11.2 ∆I = 1/2 rule in the decays of strange particles. Show that
Γ(K0 → π+ + π−) = 2Γ(K0 → π0 + π0), if ∆I = 1/2 strictly holds. The
deviation is used to measure the ratio ω = |A2/A0| = 1/22 of the amplitudes
A0 and A2 mentioned in the text. With the ∆I = 1/2 rule, show that
the amplitudes a+ ≡ A(Σ+ → n + π+), a− ≡ A(Σ− → n + π−), and
a0 ≡ A(Σ+ → p + π0) satisfy a+ +

√
2 a0 = a−. This relation, represented

by a rectangular triangle, can be translated into Γ(Σ+ → n+π+) = Γ(Σ− →
n + π−) = Γ(Σ+ → p + π0). Compare this prediction with the data.

11.3 Long and short neutral D and B mesons. Explain why for the
flavored neutral meson systems : D0 = (u c), B0

d(bd), and B0
s (bs), the CP-

even and -odd eigenstates cannot appear as the long and short components
to be easily identified, contrary to the neutral K system.

11.4 Mass difference ∆mB. For the two eigenstates coming from the

B0
d–B

0

d mixing, while one cannot make a distinction between their lifetimes,
their mass difference ∆mB can however be measured (Chap. 16). It turns
out that ∆mB = (3 ± 0.12) × 10−4 eV ≈ 102 × ∆mK. With such value of
∆mB, show that one can predict a lower bound of the top quark mass, before
its discovery in 1994. Explain why the mass difference ∆ms

B of the two B0
s

eigenstates is again much larger than ∆mB. Estimate ∆ms
B.

11.5 The relation (11.88). Derive this useful relation.
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