
10 Electron–Nucleon Scattering

This chapter begins with an introduction to the notion of form factors and
structure functions which play a central role in all electromagnetic and weak
processes involving hadrons. As functions of the Lorentz-invariant momen-
tum transfer q2, form factors parameterize the interactive effects of the con-
stituents of the hadrons. First, we give an intuitive physical interpretation of
the electromagnetic form factor as the charge distribution of the hadron and
associate its slope with the hadron size. Next, we look at the form factors
of weak interaction. Their normalization and dependence on q2 are also dis-
cussed. A brief survey is made of their analytic property through dispersion
relations and pole dominance. The nucleon form factors can be measured by
elastic lepton–nucleon scattering, and the physical meaning of each term in
the Rosenbluth formula for the cross-section is explained in detail.

We recall that a particle (of four-momentum qµ) is virtual or off-mass-
shell if its invariant mass squared q2 = q2

0 − |q|2 is not necessarily equal to
its true mass squared m2, e.g. a virtual photon has q2 6= 0. The invariant
mass of the virtual photon exchanged in electron–nucleon scattering can be
varied by changing the energy and/or the angle of the scattered electron. The
possibility of varying q2 in deep inelastic scattering provides a powerful probe
of the detailed structure of the nucleon, showing that quarks are pointlike
constituents of matter. We introduce the Bjorken scaling law of the nucleon
structure functions and its interpretation by Feynman with the quark–parton
picture, which describes so well experimental data. Evidence for gluons as
hadronic constituents insensitive to electroweak interactions is also given.

10.1 Electromagnetic and Weak Form Factors

In our present understanding, based on direct and indirect experimental data,
there is every reason to believe that leptons and quarks – the fundamen-
tal constituents of matter – are structureless down to a distance scale of
10−16 cm, independently of their other properties. From the very light or
even massless neutrinos to the top quark as heavy as the Au nucleus, all of
these twelve fermionic constituents are assumed to be pointlike in spite of
the huge differences in their masses.

On the other hand, mesons and baryons (hadrons) have structure. Their
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static and dynamic properties deduced from their production and decay
modes, together with their spectra, all indicate that hadrons are effectively
bound states of quarks (see Chap. 7). Like any composite object, the hadrons
naturally carry complicated spatial structures and behave differently from
pointlike leptons in their electromagnetic and weak interactions. For in-
stance, the lepton–hadron cross-sections decrease rapidly with q2, in sharp
constrast with the lepton–lepton cross-sections.

This can be understood intuitively as follows: in lepton–lepton scatter-
ing, if a pointlike lepton is hit by a photon emitted from the other lepton, the
only effect is that its momentum will be changed in a way consistent with
energy-momentum conservation; the strength of the interaction and there-
fore the cross-section is insensitive to the momentum transfer q2. On the
other hand, in lepton–hadron scattering, because of the interaction between
the constituents of the hadron and the photon emitted from the lepton, the
strength of the interaction will depend on q2; the more q2 increases, the more
the inner structure of the composite target can be probed and the nature of
the interaction between the constituents can be revealed.

To describe the hadron structure, the standard approach is to introduce
a form factor , which is the Fourier transform in momentum space of the
spatial structure of the hadron. Its physical meaning is illustrated by the
following example.

Let us consider the scattering of an electron by the static Coulomb field
of a heavy nucleus (Rutherford experiment at the beginning of the century).
In our contemporary language, the electron–nucleus interaction is governed
by the exchange of a virtual spacelike photon between the projectile (electron)
and the target (nucleus). When the three-momentum q = pf −pi transferred
to the photon by the incoming electron pi and the outgoing electron pf is
small, say |q| ∼ 20 KeV ∼ 109/cm = 1/(10−9cm), the electromagnetic probe
cannot penetrate the interior of the nucleus, which has a much smaller size
∼ 10−12 cm, as if the latter were simply a pointlike positive charge Ze , e > 0.
As the transferred momentum increases, say up to 20 MeV = 1/(10−12 cm)
or higher, the complexity of the nucleus becomes more and more transparent
and the photon starts to see the protons with their electric charges distributed
inside the nucleus. The Coulomb potential of a pointlike nucleus should be
replaced by that of an extended object

Ze

4π r
≡ Ze

4π |x| −→
∫

d3y
ρ(y)

4π |x − y| ≡
1

4π
V (r) , (10.1)

where ρ(y) is the charge density of protons inside the nucleus, normalized to
Ze:

∫

ρ(y)d3y = Ze. An unrealistic, structureless nucleus may be considered
as a special case where all the protonic charges are concentrated at a single
point: ρ(y) = Ze δ3(y). The Fourier transforms in momentum space of the
potentials Ze/4π r and V (r)/4π are denoted by Vpt(q) and V (q) respectively,

Vpt(q) ≡ Ze

4π

∫

d3x e−iq·x 1

r
, V (q) ≡ 1

4π

∫

d3x e−iq·xV (r) . (10.2)
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Our purpose is to show that V (q) and Vpt(q) are related by a measurable
nuclear form factor FN(q2) defined in (8) and (9). In (2), the three-dimension
Fourier transformation proceeds only with a three-vector q adapted to the
nonrelativistic case of a heavy nucleus of mass M considered here. The
transferred energy q0 ≡

√

M2 + |q|2 − M is practically zero, only q enters,
and the fourth-component Fourier transform

∫

dt eiq0t = 2π δ(q0) simply
refers to this fact. Let us first consider Vpt(q),

∫

d3x e−iq·x 1

r
= lim

µ→0

∫

d3x e−iq·x e−µr

r

= lim
µ→0

2π

∫ ∞

0

e−µr

r
r2dr

∫ 1

−1

e−i|q|·r cos θd cos θ

= lim
µ→0

4π

(|q|2 + µ2)
=

4π

|q|2 . (10.3)

The parameter µ (which has the dimension of mass or inverse of length, since
µr is dimensionless) is introduced to make the integral easier to handle, the
final result is however independent of it. We have

Vpt(q) =
Ze

|q|2 . (10.4)

Instead of (4), where everything is expressed in terms of the three-vector q,
it would be nice to have a covariant form with the Lorentz-invariant q2 =
q2
0 − |q|2 of the four-vector qµ. The Fourier transform of the static Coulomb

potential corresponds, as we have seen, to zero energy transfer for which
the invariant q2 takes the −|q|2 value. One then naturally arrives at the
prescription: |q|2 is to be replaced by −q2. Note that the invariant q2 can be
timelike (q2 > 0) or spacelike (q2 < 0), however in all scattering processes, q2

is necessarily spacelike and the substitution q2 → −|q|2 < 0 is natural. We
rewrite (4) in the form

Vpt(q
2) =

−Ze

q2
. (10.5)

Yukawa potential. We can make a remark about (3): from (2) and (4),
the nonrelativistic limit 1/|q|2 of the propagator −1/q2 of a massless bo-
son mediated between the electron and the nucleus gives rise to a potential
proportional to 1/r.

By the same trick, when going back from the bottom to the top right-
hand side of (3), we realize that the nonrelativistic limit 1/(|q|2 + µ2) of
−1/(q2 − µ2) (propagator of an exchanged spinless particle of mass µ) can
generate the potential e−µr/r. The range of the force is 1/µ (since for a
distance beyond this range, µr > 1 , e−µr becomes exponentially negligible).
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It results that the exchange of a meson through its nonrelativistic propagator
is the source of the interacting potential between two particles

∫

d3q eiq·x

(2π)3
1

|q|2 =
1

4π r
;

∫

d3q eiq·x

(2π)3
1

|q|2 + µ2
=

e−µr

4π r
.

This fundamental concept that brings together the two-body potential e−µr/r
and the mass µ of their mediated meson was discovered by Yukawa in 1935.
Its physical meaning is already mentioned in Chap. 1 (Fig. 1.1). Knowing
the nuclear force range of about 1 or 2 fm [1 fm = 10−13cm ≈ (200 MeV)−1],
Yukawa then predicted the existence and the mass between 100–200 MeV
of a spinless particle, which later turns out to be the π meson exchanged
between nucleons. When µ → 0, we recover the Coulomb potential; the
infinite range of the electromagnetic force is a direct consequence of massless
photons. Similarly, if the Coulomb potential between two charges e1 and
e2 is e1e2/4πr, the nuclear potential produced by the π meson exchanged
between the two nucleons would be g2

πNNe−r mπ/4πr, where gπNN is the pion–
nucleon coupling constant (g2

πNN/4π ≈ 13.5). The spin effect of the nucleon
can also be incorporated and yields the one-pion-exchange (OPE) nucleon–
nucleon force (Problem 10.1). It is important not to confuse the notion of
form factors considered here with the Yukawa mechanism that provides the
interacting potential e−µr/r from an exchanged boson of mass µ.

Let us go back to the potential V (q) in (1) and (2):

V (q) =
1

4π

∫

d3x e−iq·x

∫

d3y
ρ(y)

|x − y| . (10.6)

Putting x − y = z and using (3), we obtain

V (q) =
1

4π

∫

d3z
e−iq·z

|z|

∫

d3y e−iq·yρ(y) =
FN(q2)

|q|2 . (10.7)

V (q) is the nonrelativistic version of V (q2) and FN(q2) defined by

FN(q2 = −|q|2) ≡
∫

d3y e−iq·yρ(y) (10.8)

is the Fourier transform of ρ(y), the proton charge distribution in the nucleus.
FN(q2) is called the electromagnetic form factor of the nucleus, with the
normalization FN(0) = Ze, as can be seen by putting |q| = 0 in (8) and
remembering that

∫

d3y ρ(y) = Ze. From (4) to (7) we get

V (q2) = Vpt(q
2)

FN(q2)

FN(0)
=

−FN(q2)

q2
. (10.9)

The meaning of form factors can be seen by comparing (5) with (9).



10.1 Electromagnetic and Weak Form Factors 347

Now in (8) we expand e−iq·y = 1 − i q · y−1
2 |q|2r2 cos2 θ + · · ·, then

after the integration over d3y, we obtain FN(q2) = FN(0)[1 + 1
6〈r2〉q2 + · · ·]

(remember the |q|2 → −q2 substitution). The integration of the linear term
q · y vanishes by the spatial symmetry, and the coefficient 1/6 = (1/2) (1/3)
comes from averaging cos2 θ. The quantity

〈r2〉 ≡ 6

FN(0)

∣

∣

∣

∣

dFN(q2)

dq2

∣

∣

∣

∣

q2=0

represents the squared radius of the nucleus.
Equations (8) and (9) show that the notion of form factor is appropriate

for describing the particle structure, the slope of the form factor at q2 = 0
gives the hadron size; the greater the object is, the faster its form factor

decreases. The electromagnetic and weak form factors of a pointlike object
are q2-independent. Form factors are directly measurable physical quantities.
We will see later in (37) that by performing electron scattering on nuclei,
we can measure FN(q2) via the Rutherford or Mott cross-section, and once
FN(q2) is obtained, by the inverse Fourier transformation of (8), we get ρ(y),
the distribution of protons inside the nucleus:

ρ(y) =
1

(2π)3

∫

d3q e+iq·yFN(q2 = −|q|2) .

The notion of the nucleus form factor FN(q2), taken as an illustrative example,
can be generalized to hadrons. The electromagnetic or weak properties of the
latter are influenced by strong interactions of their constituents (quarks and
gluons) which in turn provide them with form factors, in the same way as
the protons – constituents of nuclei – induce the nucleus form factor FN(q2).

For example, the π± and K± mesons are not pointlike, their radii can
be measured by e+ + e− → π+ + π− or K+ + K− (Fig. 10.1).
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Fig. 10.1. Measurement of the pion form factor Fπ(q2) and its radius 〈rπ〉 by
e+ + e− → π+ + π−

The anomalous magnetic moment of the proton is another manifestation
of the proton structure. In the following Gordon decomposition of a pointlike
fermionic current u(P ′)γµu(P ) (see the Appendix),

eu(P ′)γµu(P )Aµ =
e

2M
u(P ′) [(P ′ + P )µ + iσµν(P ′ − P )ν ]u(P )Aµ , (10.10)
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the second term (e/2M)u(P ′) [iσµν(P ′ − P )ν]u(P )Aµ – which can be written
in the nonrelativistic limit as (e/2M)u(P ′)σ ·Bu(P ) – clearly indicates that
the magnetic moment of a pointlike fermion of charge e and mass M is equal
to one Bohr magneton µB ≡ (e/2M). Here B is the external magnetic field,
and 1

2σ is the proton spin.
Experimentally, the magnetic moment of the proton turns out to be 2.79

µB. The difference of 1.79 µB, called the anomalous magnetic moment, is a
manifestation of the complex structure of the proton. Compared with the
anomalous term of the pointlike electron which is very close to αem/2π =
0.001161 [due to QED radiative corrections first computed by Schwinger,
see (14.15)], the proton anomalous magnetic moment is very large indeed.
Moreover, experiments show that the neutron also has a magnetic moment
equal to −1.91 µB and not zero as naively expected for a neutral pointlike
particle. As discussed in Sect. 7.4.3, these anomalous magnetic moments can
be viewed as the effects of the quark constituents of the nucleon.

In brief, probed by electromagnetic (weak) currents, the electromagnetic
(weak interaction) properties of hadrons can be described by form factors
which encapsulate strong interaction effects of the hadronic constituents.

Form factors are usually parameterized as F (q2) = F (0)/(1 − q2

Λ2 )n ; the
powers n = 1, 2 correspond to monopole and diplole respectively, and Λ is
the pole mass. Since electroweak cross-sections and decay rates of hadrons
are functions of form factors, the importance of F (0) and of the q2 behavior
is evident. In principle, the strong interaction dynamics of the quark and
gluon constituents should determine the q2 dependence and the value F (0)
of the hadronic form factors; however their determination is far from being
achieved at present although there has been significant progress. The main
reason is that we are in the low-energy QCD regime (whimsically called in-
frared slavery to contrast with ultraviolet asymptotic freedom corresponding
to high energies) which deals with bound state problems for which the strong
coupling constant is not small, and a perturbative treatment is inadequate.
Nonperturbative methods, such as quark models, QCD sum rules, or lattice
gauge theory, not discussed in this book, are still inconclusive at present.

However, even without any guidance from the dynamics of the hadronic
constituents, the form factors can be obtained kinematically by using only a
few principles: Lorentz invariance, conservation of currents, and heavy flavor

symmetry (Chap. 16). In some cases, the normalizations are also fixed by
these principles. We give in the following three typical examples: the pion
and the nucleon electromagnetic form factors, and the weak form factors
involved in the semileptonic decay B → D + `− + ν` of the bottom B meson.

Example 10.1 Electromagnetic Pion Form Factor

The most general amplitude for the interaction of the charged pions π± (of
initial four-momentum k and final four-momentum k′) with the photon εµ(q)
can be written as ±e εµ(q)Tµ(k′, k), where

Tµ(k′, k) ≡ 〈π(k′) |Jµ
em(0) | π(k)〉 .
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The quantity Tµ must obey qµTµ = 0, qµ = (k′ − k)µ since the electromag-
netic current Jµ

em is conserved, i.e. ∂µJµ
em = 0. With spinless particles, we

have at our disposal only their momenta k and k′ as degrees of freedom, hence
the most general Lorentz four-vector Tµ should have the form a(k′+k)µ+bqµ,
which is reduced to b = 0 by qµTµ = bq2 = 0. Consequently, (k′ + k)µFπ(q2)
is the only possible form of Tµ(k′, k), and Fπ(q2) is called the charged pion
form factor, normalized by the condition Fπ(0) = 1 (Problem 10.2),

〈π(k′) |Jµ
em(0) | π(k)〉 = (k′ + k)µFπ(q2) , Fπ(0) = 1 . (10.11)

For simplicity, we omit the standard one-particle state normalization factor
1/
[

(2π)3
√

4EkE′
k

]

in (11). The electromagnetic interaction of a pointlike
spinless particle ±e εµ(q)(k′ + k)µ becomes ±e εµ(q)(k′ + k)µFπ(q2) for the
π± meson

± e (k′ + k)µ −→ ±e (k′ + k)µFπ(q2) ,

pointlike pion −→ physical pion .

The above substitution is reminiscent of (9) for a spinless nucleus with its
form factor FN(q2). The proton distribution inside the nucleus is responsible
of FN(q2), similarly the strong interaction effects due to the quark and gluon
constituents of the pion produce the form factor Fπ(q2) (Fig. 10.2a). This
form factor is already measured in e− + e+ → π− + π+, where q2 ≥ 4m2

π is
timelike (Problem 10.3). It may be also measured by the pion scattering on
atomic electrons e− + π± → e− + π± or by pion electroproduction, in which
q2 ≤ 0 is spacelike [see (36) below]. The size of the pion,

√

〈r2
π〉, is given by

〈r2
π〉 = 6

∣

∣

∣

∣

dFπ(q2)

dq2

∣

∣

∣

∣

q2=0

.

Of course, all other charged spinless flavored mesons, such as K±, D±, and
B± have similar electromagnetic form factors FK(q2), FD(q2), and FB(q2),
normalized by FK,D,B(0) = 1 as in the pion case. We emphasize that these
normalizations are model independent results, due to the conserved electro-
magnetic current. These values at (and only at) q2 = 0 are not modified by
strong interaction effects of the hadronic constituents (quarks and gluons).
This important result is known as the nonrenormalized form factors.
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Fig. 10.2. (a) Pion form factor Fπ(q2) ; (b) ρ0 dominance of Fπ(q2)
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Example 10.2 Electromagnetic Nucleon Form Factors

To describe the electromagnetic current Jµ
em of the nucleon on the most

general grounds, we note that there are in all four matrices of the vecto-
rial type to be inserted between the nucleon spinors u(P ′) and u(P ). They
are γµ , iσµνqν , qµ ≡ (P ′ − P )µ, and (P ′ + P )µ. However, from the Gor-
don decomposition (10), the term (P ′ + P )µ can be written as a combina-
tion of γµ and iσµνqν ; in addition, the conservation of the electromagnetic
current implies that the term proportional to qµ must be zero, using both
qµu(P ′)γµu(P ) = 0 and the antisymmetry of σµν. Therefore, the most gen-
eral form of the nucleon electromagnetic current is expressed in terms of only
two dimensionless form factors F1(q

2) and F2(q
2):

e u(P ′)γµu(P ) −→ e u(P ′)

[

γµF1(q
2) + i

σµνqν

2M
F2(q

2)

]

u(P ) ,

pointlike nucleon −→ physical nucleon , (10.12)

with F p
1 (0) = 1 (proton electric charge), F n

1 (0) = 0 (neutron electric charge),
F p

2 (0) = 1.79 (proton anomalous magnetic moment), and F n
2 (0) = −1.91

(neutron anomalous magnetic moment).
As in the case of meson form factors FM(0) = 1 (M stands for mesons),

the normalizations F p
1 (0) = 1 , F n

1 (0) = 0 are exact results due to the
conserved electric current. On the other hand, the anomalous magnetic terms
F p,n

2 (0) cannot be computed from first principle.
We may consider the proton and neutron as the I3 = +1/2 and I3 = −1/2

components of an isospin doublet I = 1/2, and define the isoscalar F 0
i (q2) and

isovector F 1
i (q2) form factors by (i = 1, 2):

F 0
i (q2) = F p

i (q2) + F n
i (q2) ; F 1

i (q2) = F p
i (q2) − F n

i (q2) . (10.13)

With 1
2(1 + τ3)u = up , 1

2(1 − τ3)u = un, (12) may be rewritten as

e

2
u(P ′)

{[

γµF 0
1 (q2) + i

σµνqν

2M
F 0

2 (q2)

]

+

[

γµF 1
1 (q2) + i

σµνqν

2M
F 1

2 (q2)

]

τ3

}

u(P ).

These form factors can be measured by the elastic scattering e− + N →
e− + N (q2 ≤ 0, see Fig. 4.9 and Sect. 10.3 below) or by the annihilation
e+ + e− → N + N (q2 ≥ 4M2). The isovector form factors F 1

1 (q2) , F 1
2 (q2)

are useful when we study weak currents in nucleon β-decay together with
the conserved vector current (CVC) property (Chap. 12). The same CVC
relates the electromagnetic pion form factor Fπ(q2) to the weak one, the latter
appears for example in pion β-decay π− → π0 + e− + νe (Problem 10.4).

Example 10.3 B → D Weak Decay Form Factors

The amplitude M of the semileptonic decay B(p) → D(p′) + `−(k1) + ν`(k2)
(the four-momenta p, p′, k1, k2 of these particles are indicated in parentheses)
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is a product of two matrix elements, that of the V − A left-handed hadronic
weak current Hµ taken between these meson states and that of the V − A
leptonic current Lµ = `γµ(1−γ5)ν` taken between the vacuum and the lepton
pair `–ν`, where 〈`−(k1), ν`(k2) |Lµ | 0〉 = u(k1)γµ(1 − γ5)v(k2) :

M =
GF√

2
Vcb

〈

`−(k1), ν`(k2) |Lµ | 0
〉

×
〈

D(p′) |Hµ |B(p)
〉

. (10.14)

The hadronic current Hµ = cγµ(1−γ5)b ≡ V µ−Aµ is written in terms of the
relevant charm and bottom quark fields, Vcb is the corresponding Cabibbo–
Kobayashi–Maskawa (CKM) flavor mixing, and GF is the Fermi coupling
constant (Chap. 9). The second-quantized b(x) field represents the annihila-
tion operator of the b quark, while the c(x) field refers to the creation of the
c quark, corresponding to the decay b → c + `− + ν` we are considering.

Since both B(bq) and D(cq) are pseudoscalar (JP = 0−) mesons, one has
〈

D(p′) |Aµ |B(p)
〉

= 0 from general considerations of Lorentz covariance and
parity. Indeed, with only two momenta pα and p′β as degrees of freedom at
our disposal, there is no way to build up a matrix element of an axial-vector
Aµ sandwiched between two spinless mesons having the same intrinsic parity.
The matrix element of Aµ in this case must have the structure εµαβγpαp′βPγ

suited to its JP = 1+ property. But an independent third vector Pγ is lacking
to construct such a term. So, 〈0± |Aµ | 0±〉 = 0 for all JP = 0± mesons.

There remains the vector part 〈0± | V µ | 0±〉 6= 0. If one particle is
pseudoscalar, the other is scalar (or the vacuum), then the roles of V µ and
Aµ are interchanged, i.e. 〈0± |V µ | 0∓〉 = 0 while 〈0± |Aµ | 0∓〉 6= 0. The best
example is 〈0 |Aµ |π(k)〉 = ifπkµ. From Lorentz covariance, the most general
matrix element of V µ sandwiched between the two JP = 0− mesons is
〈

D(p′) |V µ |B(p)
〉

= f+(q2)(p + p′)µ + f−(q2)(p − p′)µ , (10.15)

where q ≡ p − p′ = k1 + k2 is the four-momentum transfer and f+(q2) and
f−(q2) are the dimensionless weak transition B → D form factors which are
functions of the invariant q2. Contrary to the electromagnetic current Jµ

em of
charged pions considered in (11), the weak vector current V µ = cγµb is not
conserved [qµV µ ∝ (mb − mc) 6= 0], hence we have two form factors f±(q2)
instead of a single Fπ(q2) as in the pion case. Here the timelike q2 = (k1+k2)

2

represents also the squared invariant mass of the lepton pair, it varies within
the range m2

` ≤ q2 ≤ (MB − MD)2 ≡ q2
max.

Unlike the case of electromagnetic interactions with the exact results
(11), the normalizations of the weak form factors are in general unknown.
However, in the limit of infinitely heavy quark masses, ΛQCD � MB, MD →
∞, a new heavy flavor symmetry (Chap. 16) appears in the effective La-
grangian of the standard model. This symmetry provides model-independent

normalization of the weak form factors f±(q2
max) at q2

max, using a method
similar to the derivation of Fπ(0) = 1. The results are

f+(q2
max) =

MB + MD

2
√

MBMD
, f−(q2

max) = − MB − MD

2
√

MBMD
. (10.16)
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The normalizations (16) are of great importance for the determination of Vbc.
Its proof based on the heavy flavor symmetry will be given in (16.75).

10.2 Analyticity and Dispersion Relation

We remark that form factors are analytic functions in the complex q2 plane
except for singularities on the real timelike q2 ≥ 0 axis. This property is
illustrated by a calculation of the magnetic form factor in Chap. 14; we also
show, in another explicit example of the vacuum polarization (Chap. 15),
that Feynman loop amplitudes are analytic. The singularities (poles or cuts)
exist whenever the variable q2 has values for which it is possible for all the
particles in an intermediate state to be on the mass shell, i.e. to be physical
[see Fig. 10.2b and (15.32)]. Let us take the simplest example of Fπ(q2). For
q2 ≥ 4m2

π , the virtual photon can produce two on-mass-shell pions, Fπ(q2)
becomes a complex function with a cut starting at q2 ≥ 4m2

π.
The discontinuity of Fπ(q2) above and below the cut gives the imaginary

part of Fπ(q2): Fπ(q2 + iε) − Fπ(q2 − iε) = 2i ImFπ(q2). An isolated single
intermediate state gives rise to a pole.

On general grounds, the analyticity of the scattering amplitudes (or form
factors) was first derived by Gell-Mann, Goldberger, and Thirring from the
condition of macroscopic causality, which states that commutators of field
operators vanish when the points at which the operators are evaluated are
separated by a spacelike interval. Then using the Cauchy theorem, we can
write dispersion relations relating them to their imaginary parts. The once-
subtracted dispersion relation for Fπ(q2) is

Fπ(q2) = Fπ(0) +
q2

π

∫ ∞

4m2
π

ImFπ(s)

s(s − q2 − iε)
ds . (10.17)

Of course the unsubtracted dispersion relation is equally valid, provided that
the function Fπ(z) decreases rapidly [Fπ(z) → 0 as |z| → ∞] to allow the
integral to converge. In this case the imaginary part obeys the sum rule

Fπ(q2) =
1

π

∫ ∞

4m2
π

ImFπ(s)

s − q2 − iε
ds , Fπ(0) = 1 =

1

π

∫ ∞

4m2
π

ImFπ(s)

s
ds . (10.18)

The computation of the form factor then reduces to evaluating its imag-
inary part. Im[Fπ(s)] can be obtained from e+ + e− → γ∗ → π+ + π− data
for which the propagator of the ρ(770) meson dominates in the s ∼ 0.6 GeV2

region (see Fig. 10.2b). In the zero-width approximation of this ρ meson, we
have from its propagator [note that Im(x ± iε)−1 = ∓πδ(x)],

ImFπ(s) = πgρππfρmρδ(s − m2
ρ) + · · · , (10.19)

where the residue at the ρ pole is gρππfρmρ as shown by Fig. 10.2b. The
dots denote other contributions beyond the ρ0. The two parameters gρππ and
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fρ in (19) are defined as follows: The dimensionless coupling constant gρππ

can be determined from the ρ(k) → π(p) + π(p′) strong decay for which the
effective Lagrangian Leff and the decay amplitude may be written as

Leff = gρππρµ(x)

[

π(x)
↔

∂µ π(x)

]

, M(ρ → ππ) = gρππεµ(k)(p − p′)µ .

This gives : Γρ ≡ Γ(ρ → ππ) =
mρg

2
ρππ

48π

(

1 − 4m2
π

m2
ρ

)3/2

. (10.20)

The electromagnetic decay constant of the ρ0 , called fρ, is defined similarly
to the weak decay constant of the pion fπ ≈ 131 MeV. This fπ , which
governs the weak decay π+ → W+ → e+ + ν , is defined by 〈0 |Aµ |π+(k)〉 =
ifπkµ [Fig. 10.3a and (12.55), (13.32)]. The decay constant fρ determines
the amplitude M(ρ0 → γ∗ → e+ + e−) (Fig. 10.3b):

〈0 |Jµ
em | ρ(k)〉 = fρmρεµ ,

〈

e+(p′), e−(p)
∣

∣ Jem
µ

∣

∣ 0
〉

= u(p)γµv(p′) ,

M(ρ0 → e+ + e−) = i (−ie)2
〈

e+(p′), e−(p)
∣

∣ Jem
µ

∣

∣0
〉 −i

k2
〈0 | Jµ

em | ρ(k)〉 ,

from which : Γ(ρ0 → e+ + e−) =
4πα2f2

ρ

3mρ
. (10.21)

The decay constant fρ has the dimension of mass, as does fπ .
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Fig. 10.3. (a) π+ → e+ +νe weak decay; (b) ρ0 → e+ +e− electromagnetic decay

Putting (19) into (17), we get

Fπ(q2) = 1 +
gρππfρ

mρ

q2

m2
ρ − q2

+ · · · . (10.22)

It turns out from (20) and (21) that data give g2
ρππ/4π ≈ 2.88 , fρ ≈

150 MeV. From these numbers, we get gρππfρ/mρ ≈ 1.17, close to 1, which is
the value corresponding to the universal ρ dominance hypothesis, according
to which the ρ meson completely determines the electromagnetic form factors
of low-lying hadrons (pion, nucleon). In the dispersion relation approach, this
hypothesis consists in neglecting all contributions from non-resonant back-
ground (γ∗ → continuum background → π+ + π−), as well as from other
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resonances f0(1300), ρ(1450), etc. This value 1 obviously satisfies the sum
rule (18). Then, in the zero-width approximation of the ρ meson:

Fπ(q2) =
1

1 − q2

m2
ρ

−→ pion radius
√

〈r2
π〉 =

√
6

mρ
≈ 0.64 fm . (10.23)

A more sophisticated expression of Fπ(q2) with a Breit–Wigner form and a
q2-dependent of the ρ-width, is given in (13.40) and (13.41).

We turn now to the weak form factors of B → D transition. Instead of
f±(q2) in (15), we introduce another parameterization that singles out the
spin character of the current,

〈

D(p′) |Vµ |B(p)
〉

= G1(q
2)

[

(p + p′)µ − M2
B − M2

D

q2
qµ

]

+ G0(q
2)

M2
B − M2

D

q2
qµ . (10.24)

Indeed let qµ = (p−p′)µ act on both the left and right members of the above
equation, then we realize that G0(q

2) represents the matrix element of the
operator qµVµ which behaves like a JP = 0+ scalar object. For a conserved
current, this spin-0 form factor vanishes. The G1(q

2) form factor corresponds
to the spin-1 part of the current since its associated operator is orthogonal
to qµ, i.e. qµ

[

(p + p′)µ − (M2
B − M2

D)qµ/q2
]

= 0. G1(q
2) and G0(q

2) are
subject to G1(0) = G0(0), which eliminates the spurious pole at q2 = 0.

One advantage of considering G1(q
2) and G0(q

2) lies in the fact that
their q2 dependences are easy to guess, since the imaginary parts of these form
factors are associated respectively with the vector B∗

c and scalar Bc resonances
bearing the bottom–charm quantum numbers. To be more explicit, let us
mimic the Fπ(q2) case with the ρ dominance, then the G1(q

2) and G0(q
2)

form factors as visualized by Fig. 10.4 are respectively dominated by the
vector B∗

c and scalar (JP = 0+, Bc) bottom–charm cb resonances of masses
around 6.5 GeV, for which the q2 dependences are monopoles, as in (23):

G1(q
2) =

G1(0)

1 − q2/M2
B∗

c

, G0(q
2) =

G0(0)

1 − q2/M2
Bc

. (10.25)
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2)) form factors in weak
decay B → D + `− + ν`



10.3 Exclusive Reaction: Elastic Scattering 355

It must be emphasized that these q2 behaviors, although plausible, are model
dependent, they are derived from the assumption of the nearest resonance
dominance. It could be a good approximation in the largest-q2 region near
the poles. Assuming this monopole q2 dependence (25), and using (16), the
weak form factors G1,0(q

2) are theoretically determined, including their nor-
malizations G1,0(0). B meson decays will be discussed in detail in Chap. 16;
as shown by (16.86) the q2 dependence of G1(q

2) = f+(q2) can be experimen-
tally measured by looking at the q2 distribution of dΓ(B → D+e+ +νe)/dq2,
therefore the G1(q

2) extracted from data can be confronted with theoreti-
cal models of form factor. As for the scalar form factor G0(q

2) = f+(q2) +
[

q2/(M2
B − M2

D)
]

f−(q2), its contribution to Γ(B → D + `+ + ν`) via f−(q2)
is proportional to the squared lepton mass [see (16.87)], hence only the τ in
the decay products is sensitive to G0(q

2).
This section ends with a discussion of the Watson theorem according to

which, below the inelastic threshold, the phases of electromagnetic (weak)
amplitudes are equal to the strong interaction elastic phase-shifts of the
hadrons involved. The demonstration is based on the unitarity of the S
matrix together with the time-reversal invariance of the amplitudes. Since
S†S = 1 , S = 1 − i T , then

i
(

Tf i − T ∗
i f

)

=
∑

n

T ∗
n fTn i , Tf i ≡ 〈f | T | i〉 .

Consider the electromagnetic transition A → B + C followed by an elastic

final-state strong interaction: A
em.−→ B + C

strong−→ B + C, i.e. we have i= A
and n=f=B + C. Time-reversal invariance implies Tf i = Ti f (where

∣

∣i
〉

=

T |i〉), such that the left-hand side of the above unitarity relation reduces
to −2Im Tf i and both sides are real valued. Denoting the electromagnetic
amplitude by |Tem| exp(i ϕ), and the strong amplitude by |Tsg| exp(i δ), then

ϕ = δ. For instance, consider the electromagnetic form factor γ∗ em.−→ π + π

followed by a final-state strong interaction between the pions π+π
strong−→ π+π,

then Fπ(q2) is given by |Fπ(q2)| exp[iδππ(q2)]. Since the strong phase-shifts
can in principle be extracted from experimental data, in particular from
π + π scattering, the form factor Fπ(q2) can be obtained from the p-wave
phase-shift δππ(q2) via dispersion relation (Problem 10.7). The same theorem
applies to the weak form factor G1(q

2) [or G0(q
2)], its phase is the p-wave

(or s-wave) phase-shift of the B+D → B+D strong scattering.

10.3 Exclusive Reaction: Elastic Scattering

According to the Feynman rules, the one-photon exchange elastic amplitude
e−(p) + N(P ) → e−(p′) + N(P ′) (Figs. 4.9 and 10.6a) may be written as

M = (+ie)u(p′)γµu(p)

(−i

q2

)

(−ie)Hµ ,

Hµ ≡ u(P ′)

[

γµF1(q
2) + i

σµνqν

2M
F2(q

2)

]

u(P ) , (10.26)
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where q = P ′ − P . It can be deduced directly from the e− + µ+ → e− + µ+

amplitude by a simple substitution γµ ⇒ γµF1(q
2) + i[σµνqν/2M ]F2(q

2) at
the muon vertex.

We put K = P + P ′ , s = (P + p)2 , −t = −q2 = Q2 ≥ 0. The nucleon
and electron masses are respectively denoted by M and m. The cross-section
is given by formulas (4.57) and (4.62):

dσ

dQ2
=

1

16πλ(s, M2, m2)

(1

4

∑

spins

|M|2
)

. (10.27)

The factor 1/4 = (1/2)(1/2) in (27) represents the spin averaging of the
incoming electron and proton; for undetected spins in the final states, their
summation is understood. With the Gordon decomposition, let us rewrite
the nucleon current Hµ as u(P ′) [(F1 + F2)γµ − (Kµ/2M)F2] u(P ), then

1

4

∑

spins

|M|2 =

(

e2

q2

)2

lµνHµν ,

Hµν =
1

2

{

(F1 + F2)
2Tr [ 6P ′γµ 6Pγν + M2γµγν ]

+ F 2
2

KµKν

4M2
Tr [ 6P ′ 6P + M2] − 4F2(F1 + F2)KµKν

}

,

lµν =
1

2
Tr [ 6 p′γµ 6pγν + m2γµγν ] = 2

(

pµp′ν + pνp′µ +
q2gµν

2

)

, (10.28)

so that

1

4

∑

spins

|M|2 = 4

(

e2

q2

)2{

(F1 + F2)
2

[

(s− M2 − m2)2 + q2(s +
q2

2
)

]

−
[

2F1F2 +

(

1 +
q2

4M2

)

F 2
2

]

[

(s− M2 − m2)2 + q2(s − m2)
]

}

= 4

(

e2

q2

)2{(

F 2
1 − q2

4M2
F 2

2

)

[(s− M2 − m2)2 + q2(s − m2)]

+(F1 + F2)
2q2

(

m2 +
q2

2

)}

. (10.29)

Following Sachs, let us define the electric GE(q2) and magnetic GM(q2) form
factors as a combination of F1(q

2) and F2(q
2):

GE(q2) = F1(q
2) +

q2

4M2
F2(q

2) , GM(q2) = F1(q
2) + F2(q

2) ,

Gp
E(0) = 1 , Gn

E(0) = 0 , Gp
M(0) = 2.79 , Gn

M (0) = −1.91 ,

F 2
1 − q2

4M2
F 2

2 =
G2

E − (q2/4M2)G2
M

1 − (q2/4M2)
. (10.30)



10.3 Exclusive Reaction: Elastic Scattering 357

In the laboratory system P = (M, 0) , p = (E, p) , p′ = (E′, p′). Using
P ′2 = M2 = (P + q)2, we deduce

q2 + 2M(E − E′) = 0 , q2 = −2Mν , ν ≡ E − E′ . (10.31)

In the limit s � m2, the incoming and outgoing electrons are extremely
relativistic, the formula (4.69) for the cross-section is adapted to this case.
We also have

p · p′ ≈ EE′ cos θ ; q2 ≈ −2EE′(1 − cos θ) = −4EE′ sin2 θ

2
. (10.32)

From (31) and (32): q2 = −2M(E−E′) = −2EE′(1−cos θ), we remark that
for fixed E the two quantities E′ and cos θ are not independent because

E′

E
=

1

[1 + E
M (1 − cos θ)]

=
1

1 + 2E
M

sin2 θ
2

. (10.33)

Coming back to the first term of the right-hand side of (29), we find (s−M2−
m2)2 + q2(s−m2) ≈ 4M2EE′ cos2 θ

2 . When we rewrite the q2(m2 + q2/2) ≈
q2(q2/2) of the second term as (−q2/2M2) tan2 θ

2 times the common factor

4M2EE′ cos2 θ
2 , we obtain the following results, using (4.64), (4.69) and the

relation dΩlab = π dQ2/E′2, (e2/4π = α ≈ 1/137):

dσ

dQ2
=

π σMott

EE′

[

G2
E(q2) − q2

4M2G2
M(q2)

1 − q2

4M2

− q2

2M2
G2

M(q2) tan2 θ

2

]

,

dσ

dΩlab
=

(

dσ

dΩlab

)

NS

[

G2
E(q2) − q2

4M2G2
M(q2)

1 − q2

4M2

− q2

2M2
G2

M(q2)tan2 θ

2

]

,

(

dσ

dΩlab

)

NS

≡ σMott

1 + 2E
M sin2 θ

2

, and σMott ≡
(

α cos θ
2

2E sin2 θ
2

)2

. (10.34)

Remarks. From the Rosenbluth formula (34), three remarks can be made:
(a) For a structureless nucleon: F p

1 (q2) = 1 , F n
1 (q2) = F p

2 (q2) = F n
2 (q2) = 0;

Gp
E(q2) = Gp

M(q2) = 1 , Gn
E(q2) = Gn

M(q2) = 0. The elastic cross-section
e−+ pointlike neutron is identically vanishing. We also recover the formula
(4.161) of a pointlike proton. This formula (4.161) or (34) also gives the
elastic e− + µ+ cross-section

dσ(e− + µ+ → e− + µ+)

dQ2
=

πσMott

EE′

(

1 − q2

2M2
tan2 θ

2

)

,

dσ(e− + µ+ → e− + µ+)

dΩlab
=

(

dσ

dΩlab

)

NS

(

1 − q2

2M2
tan2 θ

2

)

. (10.35)
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The subscript NS in (dσ/dΩlab)NS denotes no-structure cross-section. The

first term σMott ≡
[

α cos θ
2
/2E sin2 θ

2

]2
in (34) [already met in (4.159)] cor-

responds to the scattering of a spin- 1
2 pointlike charged particle by a spinless

pointlike target of charge ±e. The second term 1/(1 + 2E
M sin2 θ

2 ) represents
the target recoil where the generic M denotes the target mass. Without
the cos2 θ

2 term, the Mott cross-section is identical to the Rutherford cross-

section σR ≡ [α/2E sin2 θ
2 ]2 which corresponds to the scattering of a scalar

projectile by an ultra heavy scalar target, both are pointlike with charges ±e.
The angular distribution cos2 θ

2
reflects the spin- 1

2
of the projectile.

(b) The term tan2 θ
2

of (34), (35) comes from G2
M ≡ (F1 +F2)

2 presented on
the last line of the RHS of (29). Through the magnetic moment, it represents
the target spin. We recall that a Dirac particle, even pointlike, has a spin
magnetic moment approximately equal to a Bohr magneton. The tan2 θ

2
corresponds to the spin- 1

2 effect of the target: if the latter is spinless, as in
electron scattering by pion, this term is absent, and the Mott cross-section
σMott is recovered. Note the coefficient q2/2M2 of the magnetic term which
becomes important for large q2. In brief, the cos2 θ

2 refers to the spin- 1
2 of

the projectile, the tan2 θ
2 carries the spin- 1

2 character of the target. The
electron–pion scattering therefore can be immediately deduced:

dσ(e− + π± → e− + π±)

dΩlab
=

(

dσ

dΩlab

)

NS

|Fπ(q2)|2 . (10.36)

Similarly, we get the cross-section of electron scattering by a spinless nucleus
N of charge Ze considered as an example of form factors in Sect. 10.1. Thus,

dσ(e− + N → e− + N )

dΩlab
=

(

dσ

dΩlab

)

NS

|FN(q2)/e|2 , (10.37)

which tends to Z2 (dσ/dΩlab)NS for a pointlike spinless nucleus.
We will see that in deep inelastic lepton–nucleon scattering, quarks are

revealed as constituents of the nucleon through the tan2 θ
2 term. The physical

meaning of the cos2 θ
2 and tan2 θ

2 terms (or sin2 θ
2 for the latter if we do not

factorize the common cos2 θ
2 ) can be understood as follows.

The electromagnetic interactions of the projectile electron may be split
into two parts. The first, composed of uLγµuL and uRγµuR, corresponds to
its electric interaction with another charged target for which the outgoing and
incoming electrons conserve their helicities. The second, uL[iσµνqν]uR and
uR[iσµνqν]uL, corresponds to its magnetic interaction with the target spin for
which the outgoing and incoming electron have opposite helicities. Angular
momentum conservation implies that the forward (backward) scattering is
allowed (forbidden) by the electric interaction and forbidden (allowed) by
the magnetic interaction. The helicity-conserving amplitude is proportional

to the rotation matrix d
1/2
1/2,1/2(θ) = d

1/2
−1/2,−1/2(θ) = cos θ

2 , characteristic
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of a spin 1/2 particle (the electron) scattered by any charged (spinless or

not) target; while the helicity reversing amplitude depends on d
1/2
1/2,−1/2(θ) =

−d
1/2
−1/2,1/2(θ) = sin θ

2 , which can only occur with an electron scattered by a

spin-1/2 target having a magnetic moment [remember σµν ∼ σ with (10)].
The diagrams in Fig. 10.5 illustrate the meaning of the cos2 θ

2 and sin2 θ
2

angular distributions.
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Fig. 10.5. Angular distributions from helicity arguments

(c) The angular distribution [sin θ
2
]−4 is intimately connected to the discovery

of nuclei. Until today, from atoms to nuclei, from nuclei to nucleons, from
nucleons to quarks, the successive layers of matter are revealed in striking
similarity with the Rutherford discovery of nuclei. Before Rutherford, atoms
were considered to be the most fundamental objects. Since an atom is elec-
trically neutral and contains light particles of negative charges (electrons),
the question was how its very heavy (compared to the electron) and positive
charged particles were distributed. If the positive charges were uniformly
spread over the whole atomic volume as was generally thought at the time
(the model of Thomson, the electron’s discoverer), then by projecting ener-
getic He ions (α particles) on thin metal foils, Geiger and Marsden expected
that the α beam would be deflected by a small angle. To their surprise, they
observed that a non-negligible number of projectiles were bounced back by
an angle θ ≥ 900. It took Rutherford two years to find the explanation.

If the Thomson model of charge distribution were correct, such large
deflections could only arise, according to Rutherford, from a multitude of
scatterings by a huge number of atoms of matter. However a simple calcu-
lation based on the theory of probability shows that the odds for finding an
event with θ ≥ 900 are vanishingly small, something like 10−3500 and not
1/20 000 as found by Geiger and Marsden. The simple power law [sin θ

2 ]−4

computed by Rutherford and experimentally verified by his group can only
be explained if the projectile strikes a hard obstacle, its charge must be con-
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centrated in an extremely small region inside the atom, it cannot be spread
over the large atomic volume. The physical meaning of the angular distri-
bution [sin θ

2
]−4 is clear. This term proportional to (1/q2)2 comes from the

propagator of a photon probing a pointlike charged target found at the cen-
ter of a much larger atom. If this were not the case, i.e. if the charges were
distributed at random over the whole atomic volume and hit by the pho-
ton, then the atomic form factor, which decreases very rapidly for large q2

(large θ) because of its size, would make vanishingly small the probability
for observing an event with large θ. Thus was born the notion of a pointlike
nucleus of the atom, in which the atom contains a hard constituent: a small,
massive and positively charged nucleus. After nearly one hundred years, this
remarkable feature is still relevant today. In all scattering processes, a large
deflection of the projectile (or large transverse momentum PT in our con-
temporary language) is synonymous with a hard constituent in the target,
whether the latter is an atom or a hadron. Events in which a projectile is
bounced back by ≈ 1800 are really spectacular and may reveal new things.

After these remarks, we come back to the Rosenbluth formula (34). For
each fixed q2, if we plot experimental data of dσ/dΩlab as a function of tan2 θ

2 ,

its linear form A(q2) + B(q2) tan2 θ
2 allows us to separate A(q2) and B(q2)

and to extract the form factors GE(q2) and GM(q2). From studies of the
elastic scattering e + N → e + N, GE(q2) and GM(q2) are found to decrease
as a dipole mode,

Gp
E(q2)

Gp
E(0)

=
Gp

M(q2)

Gp
M(0)

=
Gn

M (q2)

Gn
M (0)

=
1

(

1 − q2

Λ2

)2 ; Gn
E(q2) = 0 , (10.38)

with Λ = 0.84 GeV. By doing inverse Fourier transform of the nonrelativistic
limit of [1− (q2/Λ2)]−2, we obtain ρ(r = |x|), the electric charge distribution
in the proton, together with its squared radius 〈r2

p〉 :

ρ(r) =

∫

d3q

(2π)3
eiq·x

(1 + |q|2/Λ2)2
=

Λ3

8π
e−Λr ,

∫

d3xρ(r) = 1 ,

√

〈r2
p〉 =

√
12

Λ
≈ 0.8 fm . (10.39)

The above distribution ρ(r) = Λ3e−Λr/(8π) has the property that ρ(r) →
constant as r → 0, indicating that there is no hard core in the nucleon, it is
not like a plum with a stone in the middle. The hard core corresponds for
example to a monopole decreasing form factor that gives a spatial distribution
ρ(r) = Λ2e−Λr/(4πr) tending to infinity as r → 0 (Problem 10.6). The
question is: Is the proton like jelly or like a pomegranate? Intuitively we may
imagine the former configuration as an interpretation of the bootstrap nuclear
democracy concept, for which hadrons are composite of themselves and no one
is more elementary than the others. For example the proton may be a bound
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state of n +π+ or Λ+K+ or Σ++K0. As we will see, deep inelastic scattering
provides a definite answer in favor of the second interpretation according to
which the proton contains pointlike constituents. As for the neutron, it is a

priori not at all guaranteed that the electromagnetic e–n cross-section turns
out to be also nonzero, as the neutron is electrically neutral. Since this is the
case, the constituents of the latter must be charged and must be the sources
of the neutron anomalous magnetic moment Gn

M (0) = −1.91µB. Finally, to
connect the electromagnetic form factors to the weak form factors via the
conserved vector current (CVC) property of the ∆S = 0 weak vector current
(Chap. 12), it is useful to write down the isovector and isoscalar form factors
previously defined in (13) and (30), using experimental data on GE(q2) and
GM(q2) in (38). We have

F 1
1 (q2) =

1 − 4.70 u(q2)

(1 − u(q2))[1 − v(q2)]2
; F 0

1 (q2) =
1 − 0.88 u(q2)

(1 − u(q2))[1 − v(q2)]2
;

F 1
2 (q2) =

3.70

(1 − u(q2))[1 − v(q2)]2
; F 0

2 (q2) =
−0.12

(1 − u(q2))[1 − v(q2)]2

where u(q2) ≡ q2

4M2
, v(q2) ≡ q2

Λ2
. (10.40)

By CVC, the isovector form factors F 1
1 (q2) and F 1

2 (q2) are the same form
factors of the vectorial V part of the V − A weak charged current involved
in nucleon β-decay and in neutrino–nucleon elastic scattering (Chap. 12).

To close the section, let us mention that the experimental range of
the momentum transfer q2 reached today at the electron–proton (positron–
proton) HERA collider in Hamburg is Q2 ≥ 2000 GeV2 for which the form
factors GE,M(q2) squared, as given by (38), decreases from 1 to 10−14 or less,
in sharp contrast with the nearly constant behavior of the structure functions
that we are going to discuss now. The reason is that the nucleon contains
pointlike constituents, as we will see.

10.4 Inclusive Reaction: Deep Inelastic Scattering

An exclusive reaction is a process in which the final state contains a limited
number of particles effectively observed. Elastic or quasielastic lepton scat-
tering from nucleon e + N → e + N , e + N → e + N∗ , νµ + N → µ− + N + π
are some examples.

On the other hand, in an inclusive reaction e+N → e+X (more generally
`+N → `′+X) only the final lepton `′ is detected, no attempt is made to select
a particular hadronic channel. These unobserved hadrons are symbolically
designated by X. Since each exclusive cross-section decreases sharply as
the squared of its corresponding form factors, the inclusive one, which is
nothing but the sum of all possible exclusive modes, would at first sight be
negligible for large q2. When the inclusive reaction e + N → e + X was
getting ready to be measured at SLAC (Stanford) in the 1960s, the general
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impression was rather pessimistic about the number of events that could be
collected. That was without allowing for the remarkable intuition of Bjorken
who among the first showed that deep inelastic scattering (inclusive reaction
at large q2) was an ideal tool to probe the nucleon constituents. He also
predicted the scaling law for the nucleon structure functions, later confirmed
by experiments. This law tells us that, once the term 1/Q4 is subtracted,
the deep inelastic cross-section would be constant [see (10.66) below], rather
than rapidly decreasing as the squared form factors of an exclusive reaction.
This 1/Q4 term (from the one-photon exchange) is common to both inclusive
and exclusive cross-sections [see (29) and (34)].

This surprising discovery is at the origin of the parton model, the name
was proposed by Feynman to denote the free and pointlike constituents of
hadrons in his explanation of the Bjorken scaling law. At high energy, it
is intuitively conceivable that deep inelastic reaction represents the sum of
scatterings by partons. Since these are pointlike, there are no decreasing form
factors and the cross-section behaves differently from the exclusive one.

10.4.1 Structure Functions

Before considering the details of the dynamics, let us first examine the kine-
matics of exclusive (elastic) and inclusive electron–nucleon reactions shown in
Figs. 10.6a and 10.6b respectively. For a two-body → two-body scattering,
for example the e(p)+N(P ) → e(p′)+N(P ′) or e(p)+N(P ) → e(p′)+N∗(P ′),
the cross-section depends kinematically on two independent variables which
can be chosen as the Mandelstam invariants s ≡ (P + p)2 = (P ′ + p′)2 and
t ≡ q2 = (p − p′)2 ≡ −Q2. In the laboratory system P = (M, 0) , p =
(E, p) , p′ = (E′, p′), another kinematic variable ν = P.q/M = E−E′ which
represents the energy loss is frequently used. The two independent variables
can be taken as E and ν , instead of s and t .

On the other hand, in an inclusive reaction e(p) + N(P ) → e(p′) + X,
since no specific hadron is selected, the squared invariant mass of unobserved
hadronic states X is free to take all continuous values ≥ M2. Unlike (31),
now p2

X ≡ (P + q)2 = M2 + q2 + 2Mν is no more constrained to be equal
to the squared mass of any specific hadron observed in a two-body reaction,
i.e. q2 and ν are independent. The inclusive cross-section depends on three
kinematic variables that may be taken as s , q2, and ν . In the one-photon
exchange, the elastic cross-section dσel : e(p) + N(P ) → e(p′) + N(P ′) and
the inclusive one dσin : e(p) + N(P ) → e(p′) + X are given by (Chap. 4)

dσel =
(2π)4δ4(p′ + P ′ − p − P )

2
√

λ(s, M2, m2)

(

e2

q2

)2

lµνHµν
d3p′

(2π)32Ep′

d3P ′

(2π)32EP ′

,

dσin =
1

2
√

λ(s, M2, m2)

(

e2

q2

)2

lµνWµν
d3p′

(2π)32Ep′

, (10.41)

in which the leptonic and the nucleonic tensors lµν , Hµν are defined in (28).
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Fig. 10.6. (a) Elastic electron–nucleon (e–N) scattering; (b) deep inelastic e–N
scattering; (c) electron–parton scattering

Using the relation 2s dQ2 = λ(s, M2, m2) d cos θ and the Appendix
formulas, the integration over the solid angle dΩ = 2π d cos θ in dσel gives

∫

d3p′

(2π)32Ep′

d3P ′

(2π)32EP ′

(2π)4δ4(p′ + P ′ − p − P ) =

∫

dQ2

8π
√

λ(s, M2, m2)
,

and (27) is recovered. In (41) the sum over the unobserved hadronic states
denoted as Wµν(P, q) can be written similarly to Hµν(P, q) :

Hµν(P, q) = 1
2

〈

N(P )
∣

∣Jem
µ

∣

∣N(P ′)
〉

〈N(P ′) | Jem
ν |N(P )〉 ,

Wµν(P, q) = 1
2

∑

X

{〈

N(P )
∣

∣Jem
µ

∣

∣X, pX

〉

〈X, pX | Jem
ν |N(P )〉

×(2π)4δ4(P + q − pX)
}

. (10.42)

In (42) the sum over final spin states is understood, and the average of the
initial nucleon spin is explicit with the factor 1

2 . If we count the dimensions
of different terms in the left-hand and the right-hand sides of (41) [note that
δ4(K) has the (mass)−4 dimension], we deduce that Hµν(P, q) must have a
(mass)2 dimension which is confirmed by (28). On the other hand, Wµν(P, q)
must be dimensionless, in agreement with the limit σin → σel where the sum
over the X states, represented by the symbol ΣX in (42), is reduced to a
simple nucleon N(P ′) : ΣX →

∫

d3P ′/[(2π)32EP ′ ]. The latter, which has
the (mass)2 dimension, makes Wµν(P, q) dimensionless.

By analogy with Hµν(P, q) in (28), the most general form of Wµν(P, q)
depends on gµν and three other tensors made up of P, q, and is symmetric
in the interchange µ ↔ ν since lµν is. They are (Pµqν + qµPν), PµPν , and
qµqν. Moreover, from the conserved electromagnetic current, Wµν(P, q) must
satisfy the two conditions qµWµν(P, q) = qνWµν(P, q) = 0. The four terms
gµν , PµPν , qµqν , and (Pµqν + Pνqµ) are then reduced to two that can
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be chosen as the dimensionless tensors T 1
µν and T 2

µν , which are separately
conserved (qµT 1

µν = qνT 1
µν = 0 , qµT 2

µν = qνT 2
µν = 0),

T 1
µν = −gµν +

qµqν

q2
, T 2

µν =
1

M2

(

Pµ − P.q

q2
qµ

)(

Pν − P.q

q2
qν

)

.

Conventionally, we define

Wµν(P, q) = 4π
[

T 1
µνW1(q

2, ν)+ T 2
µνW2(q

2, ν)
]

. (10.43)

W1(q
2, ν) and W2(q

2, ν) are called the nucleon structure functions. Like Wµν ,
they are dimensionless and depend on two variables usually taken as q2 and ν .
In (43), we make explicit the factor 4π coming from the angular integration
of the one-particle state d3pX in (42). Putting (43) into (41), we find in the
nucleon rest frame

lµνT 1
µν = 8EE′ sin2 θ

2
, lµνT 2

µν = 4EE′ cos2
θ

2
,

d3p′

2Ep′

=
π

2E
dQ2dν .

Then (41) becomes

dσin(e + N → e + X)

dQ2dν
=

π σMott

MEE′

[

W2(q
2, ν) + 2 W1(q

2, ν) tan2 θ

2

]

. (10.44)

This equation is to be compared with (35), the elastic cross-section of electron
scattered by a pointlike fermion Npt. In this case, using the relation (31),

i.e. q2 = −2Mν or
∫

dν δ(ν + q2

2M ) = 1, (35) can be rewritten as

dσel(e + Npt → e + Npt)

dQ2dν
=

π σMott

EE′

[

1 + 2

( −q2

4M2

)

tan2 θ

2

]

δ

(

ν +
q2

2M

)

.

(10.45)

Comparing (44) with (45), we deduce that W1,2(q
2, ν) tend to the following

simplest expressions of the elastic scattering by a pointlike nucleon:

W2(q
2, ν)

M
−→ δ

(

ν +
q2

2M

)

,
W1(q

2, ν)

M
−→

( −q2

4M2

)

δ

(

ν +
q2

2M

)

. (10.46)

It is possible to extract W1(q
2, ν) and W2(q

2, ν) by plotting data of dσin given
by (44) as a function of tan2 θ

2
for fixed q2, exactly as in the case of dσel

with GE(q2) and GM(q2) discussed previously in (34).
On the other hand, we can always write W1,2(q

2, ν) ≡ W1,2(q
2, x) as

functions of the Bjorken variable x ≡ −q2/2Mν and q2 . The invariant mass
MX of the final hadronic state is given by M2

X ≡ (p+q)2 = M2+Q2(1−x)/x,
for fixed momentum transfer Q2, each value of x may be associated with a
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specific hadronic final state: x ≈ 1 corresponds to the few-body quasielastic
scatterings, and x ≈ 0 (large MX) to multi-particles. Also, at x ≈ 0, the
nucleon–sea is probed.

It was a great surprise in 1968 when, for the first time, the SLAC–
MIT experiments showed that at large q2, the deep inelastic cross-section
appeared much larger than expected. In other words, the structure functions
W1,2(x, q2) extracted from data are found to behave very differently from the
form factors squared G2

E,M (q2). Indeed, data show that for fixed values of x,

when Q2 varies from 1 to 25 GeV2, the maximal energies reached at that time,
W1(x, q2) and (ν/M)W2(x, q2) are practically constant whereas in the same
Q2 range, the G2

E,M(q2) drop from 1 to 10−6. Nowadays for Q2 as large as a

few thousands of GeV2 (Fig. 10.7) at HERA, the structure functions remain
astonishingly constant or slightly increasing at small x, while the form factors
squared decrease from 1 to 10−14.

Fig. 10.7. The structure function F2(x, q2) (cf. (10.48)) from Dainton, J. in Proc.

Workshop on Deep Inelastic Scattering and QCD (eds. Laporte, JF. and Sirois,
Y.). Editions de l’Ecole Polytechnique, Paris 1995.
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10.4.2 Bjorken Scaling and the Feynman Quark Parton

This surprising behavior was in fact already anticipated by Bjorken in 1966.
From considerations based on the Gell-Mann quark model current algebra
commutators, he discovered the scaling law according to which in the limit

−q2 ≡ Q2 → ∞ , ν → ∞ , with
Q2

2Mν
≡ x fixed , (10.47)

the structure functions depend only on x :

W1(q
2, ν) −→

q2,ν→∞
F1(x) ,

ν

M
W2(q

2, ν) −→
q2,ν→∞

F2(x) . (10.48)

The physical content of the Bjorken scaling law (48) lies essentially in the
finite limit of the structure functions F1(x) and F2(x), since one can always
write W1(q

2, ν) ≡ F1(x, q2) and (ν/M)W2(q
2, ν) ≡ F2(x, q2). For each fixed

value of x, when −q2 → ∞, the limits of F1(x, q2) and F2(x, q2) can depend
only on x. In principle, they may tend to infinity or zero, the latter possibility
is naively expected when we notice that, in a sense, the structure functions
represent just an incoherent sum of squared form factors, each tending quickly
to zero for large q2. Bjorken assured us that F1(x) and F2(x) are finite.

How did Feynman interpret deep inelastic scattering data ? Since the ex-
periments on elastic electron–proton scattering by Hofstadter and his group,
who in the 1960s found that the GE(q2) and GM(q2) form factors decrease
as dipole distributions according to (38), it is known that the nucleon has
a structure and must be a bound state. But what are its constituents
called partons by Feynman, and what is the nature of their interactions ?
Two experimental facts obtained from deep inelastic scatterings are crucial:
(i) the structure functions are almost independent of q2, and remarkably
do not tend to zero as q2 → ∞; (ii) the tan2 θ

2
term is present in (44),

i.e. W1(q
2, x) → F1(x) 6= 0. We recognize that (i) hints at a loosely bound

pointlike parton probed by the virtual photon whereas (ii) suggests that this
pointlike constituent is a fermion [remember the second remark (b) after the
Rosenbluth formula]. So pointlike quarks naturally emerge from these ob-
servations as fundamental constituents of matter. As will be discussed later,
the loosely bound parton is a consequence of the QCD asymptotic freedom.

On the other hand, if the proton is a bound state of nπ+ or ΛK+ for
instance, then Wj(q

2, ν), with j = 1, 2, would be strongly dependent on q2

(since the constituents n and Λ, unlike the partons, are themselves composite
objects like p), and F1(x) would vanish (since the photon would probe the
spinless ‘constituent’ meson π+ or K+ of the proton). Also, the quark color

degrees of freedom get their dramatic confirmation in the total cross-section
σ(e+ + e− → hadrons), and in the decay rate Γ(τ → ντ + hadrons), to
mention only two examples (Sect. 7.5 and Chaps. 13–14).

Let us assume that the constituents of nucleons are valence quarks uv ,
dv, linked by gluons through non-Abelian QCD interaction and surrounded
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by pairs of quark–antiquark referred to as the nucleon sea. Besides the light
quark pairs us, us and ds, ds, the sea may also contain strange s, s and charm
c, c pairs. We distinguish the valence uv, dv from the sea us, ds and denote
their sums as u and d : u = uv + us, d = dv + ds. When this hypothesis
is confronted with experiments, all the data are excellently described: the
partons turn out to be quarks, antiquarks, and gluons.

Indeed for large q2, the photon penetrates more and more deeply into the
nucleon and strikes the nucleon partons. It interacts on the one hand with
quarks u, d, antiquarks u, d and with other flavored pairs qq of the sea; on the
other hand, like the other gauge bosons W and Z, the photon is insensitive
to gluons. The interaction between partons becomes weaker and weaker, at
large q2, the struck quarks (antiquarks) behave as if they were loosely bound,
i.e. almost noninteracting or free. They interact softly with the remaining
partons, so that when hit by photons, the outgoing partons materialize as
jets of hadrons collinear with the directions of the struck partons.

On the other hand, if quarks are not probed by high q2, ν photons,
they are strongly interacting and firmly bound in the hadron. This strange
behavior of quarks – their mutual interactions are stronger at low energy
than at high energy – can only be understood by the asymptotic freedom of
non-Abelian QCD. This property will be discussed in Chap. 15.

Of course we do not observe partons in the final state, but only hadrons.
Somehow the scattered and unscattered partons must recombine to form
hadrons. The basic assumption is that the collision occurs in two steps.
First, a parton is hit during the collision time interval t1 defined by the
energy transfer i.e. t1 ∼ h̄/ν . At a much later time t2, the partons recombine
to form hadrons of invariant mass MX , i.e. t2 ≥ h̄/MX , or in the laboratory
frame t2 ≥ h̄ν/M2

X. Since M2
X ∼ 2Mν , we have t2 ≥ h̄/2M and t2 � t1

is equivalent to ν � M which is the Bjorken limit. Scaling implies that
during such a rapid scattering, interactions among the partons are negligible,
they are nearly ‘free’. The cross-section depends foremost on the dynamics
of the first step and very weakly on the complexities of recombination into
hadrons in the second step. High-energy deep inelastic experimental data
are described as an incoherent sum of elastic electron–quarks (or electron–
antiquarks) scatterings. Only incoherent additions take place, because the
struck quarks (antiquarks) are noninteracting and independent of each other.
As we will see later, the structure functions W1,2 are essentially total cross-
sections, so in a constituent model, it is natural that cross-sections should be
independently additive without interference.

To go further, let us denote by zj the nucleon fractional momentum
carried away by a parton j, i.e. the parton momentum kµ

j is equal to zjP
µ

where P µ is the nucleon momentum (Fig. 10.6c). For on-shell partons, (q +
zjP )2 = m2

j , and we have

q2 + 2Mν zj = 0 =⇒ zj = x ≡ Q2

2Mν
.
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The relation zj = x allows us to interpret the Bjorken variable x as the
fraction of the nucleon momentum carried away by partons. Since the in-
variant mass of the unobserved hadrons is larger than the nucleon mass,
p2

X ≡ (P + q)2 ≥ M2 =⇒ q2 + 2Mν ≥ 0, we get 0 ≤ x ≤ 1. The parton
mass mj is equal to Mzj, since m2

j ≡ k2
j = (zjP )2 = M2z2

j . The cross-section
dσj of electron scattered by a quark (or antiquark) j of charge ej (in units
of e > 0) can be obtained from (35) in which the mass M is to be replaced
by mj = Mzj together with an overall common factor e2

j . From (45), we get

dσj

dQ2dν
=

π σMott

EE′

[

e2
j + 2 e2

j

(

Q2

4m2
j

)

tan2 θ

2

]

δ

(

ν − Q2

2mj

)

. (10.49)

The contribution of each parton j to the structure functions is immediately
recognized by comparing (44) and (49). We call them w1(j) and w2(j):

w1(j) = Me2
j

Q2

4m2
j

δ

(

ν − Q2

2mj

)

= e2
j

Q2

4Mz2
j

δ

(

ν − Q2

2Mzj

)

,

w2(j) = Me2
jδ

(

ν − Q2

2Mzj

)

. (10.50)

Since each parton contributes incoherently to the cross-section, to obtain
the structure functions W1,2(q

2, ν), we simply add up the w1,2(j), each being
weighted by the probability Fj(zj) for the parton j to have a four-momentum
zjP

µ, and finally we integrate over the whole range of zj . Note that

δ

(

ν − Q2

2Mzj

)

= δ

[

ν

zj
(zj −

Q2

2Mν
)

]

=
zj

ν
δ(zj − x) . (10.51)

We identify partons as quarks or antiquarks in the construction of W1,2(q
2, ν).

On the other hand, the partonic gluons which are insensitive to electroweak
interactions do not contribute to the structure functions. The probabilities
Fj(zj = x) for finding the partons j are nothing but the distributions in
the nucleon of u(x), d(x), s(x), u(x), d(x), s(x) [may be c(x), c(x)]. For the
moment, we keep the generic Fj(zj = x) and get from (50) and (51):

W1(q
2, ν) =

∑

j

∫ 1

0

dzjFj(zj)w1(j) =
∑

j

∫ 1

0

dzjFj(zj)
e2
jQ

2

4Mz2
j

zj

ν
δ(zj − x)

=
∑

j

∫ 1

0

dzjFj(zj)e
2
j

x

2zj
δ(zj − x) =

∑

j

e2
jFj(x)

2
≡ F1(x) ,

W2(q
2, ν) =

∑

j

∫ 1

0

dzjFj(zj)w2(j) =
∑

j

∫ 1

0

dzjFj(zj)e
2
jM

zj

ν
δ(zj − x)

=
M

ν

∑

j

e2
j xFj(x) =⇒ ν

M
W2(q

2, ν) =
∑

j

e2
j xFj(x) ≡ F2(x). (10.52)
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From the above equation, we deduce directly the Callan–Gross relation

2xF1(x) = F2(x) (10.53)

which expresses the simple fact that the parton hit by the photon is a spin-
1/2 object; a spinless parton would give F1(x) = 0. Since by definition,
partons are pointlike and devoid of form factors, we easily understand why
the structure functions are q2-independent, at least when QCD effects are
ignored.

Let us mention that QCD corrections induce a smooth logarithmic q2

dependence for the structure functions in a definite way. As q2 increases,
F1,2(x, q2) slightly increase for small x. For large x the tendency is reversed,
the structure functions become smaller. Only non-Abelian gauge theory with
its asymptotic freedom property can offer such a behavior. In other words,
the Bjorken scaling law is predicted to be smoothly violated; such a violation
is indeed experimentally confirmed (see Fig. 10.7). The message can hardly
be clearer: first, one needs spin-1/2 pointlike constituents to describe the
Bjorken scaling; second, the scaling violation is predicted in a clear-cut way.
The observation of the QCD effects on electromagnetic and weak processes
(Chaps. 14 and 16) is one of the great triumphs of the standard model.

The Callan–Gross relation may also be interpreted as follows. If we
look at the diagram Fig. 10.6b for e + N → e + X as a two-step reaction
e → e + γ∗ , γ∗ + N → X, where γ∗ is a virtual photon, then we realize
that the structure functions W1,2(q

2, ν) represent in fact σtot(γ
∗ + N), the

total photoabsorption cross-sections by nucleon. In the nucleon rest frame, ν
is just the energy of the virtual photon, and q2 is the square of its invariant
mass. With a nonzero mass, the virtual photon not only has two trans-
verse polarizations εµ

±(q), but also a longitudinal polarization εµ
L(q), and the

corresponding total cross-sections are given by

σ±(q2, ν) = K εµ
±(q)ε∗ρ

± (q)Wµρ(q2, ν) ,

σL(q2, ν) = K εµ
L(q)ε∗ρ

L (q)Wµρ(q2, ν) . (10.54)

Following conventions appropriate for real photons, the kinematic flux factor
denoted by K is given by K = 8π2α/(q2 + 2Mν). With the definitions

pµ = (M, 0, 0, 0) ; qµ = (ν, 0, 0, q3 =
√

Q2 + ν2) ; εµ
± =

−1√
2
(0, 1,±i, 0) ;

εµ
L =

1
√

Q2
(
√

Q2 + ν2, 0, 0, ν) ; εµ
±ε∗ρ

± gµρ = −1 ; εµ
Lε∗ρ

L gµρ = +1,

we get

εµ
±ε∗ρ

± T 1
µρ = 1 , εµ

±ε∗ρ
± T 2

µρ = 0 , εµ
Lε∗ρ

L T 1
µρ = −1 , εµ

Lε∗ρ
L T 2

µρ =
Q2 + ν2

Q2
.
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Then (54) becomes

σT(q2, ν) ≡ 1

2
[σ+(q2, ν) + σ−(q2, ν)] = K W1(q

2, ν) ,

σL(q2, ν) = K

[

−W1(q
2, ν) +

(

1 +
ν2

Q2

)

W2(q
2, ν)

]

. (10.55)

In the Bjorken limit where Q2 , ν → ∞,

σT → K F1(x) , σL → K
F2(x) − 2xF1(x)

2x
,

R ≡ σL(q2, ν)

σT(q2, ν)
→ F2(x) − 2xF1(x)

2xF1(x)
. (10.56)

The Callan–Gross relation which is equivalent to R ≡ σL/σT → 0 agrees
with data. A spinless parton would give F1(x) = 0 or R → ∞. Such a
possibility is certainly ruled out by experiments. The reason why R is not
identically equal to zero is that the photon also hits the nucleon sea qq which
is presumably spinless. The fact that R � 1 implies that the sea contribution
is globally much smaller than the quark contributions.
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Fig. 10.8. Absorption of a virtual photon by a parton in the Breit frame

We may understand the relation σL → 0 by considering the helicities
of photon and parton in the Breit frame (Fig. 10.8). Indeed in this frame,
the three-momenta of the photon and the incoming parton are collinear and
opposite, moreover the parton momenta before and after the collision are
reversed and exactly equal. By angular momentum conservation, a spinless
parton cannot absorb the transverse components of a photon (with its spin
Jz = ±1 aligned along its three-momentum vector q) but may absorb its
longitudinal component (corresponding to Jz = 0); in other words, with
spinless parton, one gets σT = 0 and σL 6= 0. On the other hand, along
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the q axis, an incoming spin-1/2 parton with its helicities ∓1/2 can catch a
±1 photon’s spin and go away with ±1/2 helicities. In this Breit frame, the
parton helicity conservation implies a change by ±1 unit along the q axis
before and after the collision that only a transverse photon can satisfy, hence
σL = 0 and σT 6= 0.

We rewrite the probabilities Fj(zj = x) in (52) as the distributions of
quarks and antiquarks in the nucleon:

F p
2 (x) = x

{

4

9
[u(x) + u(x)] +

1

9
[d(x) + d(x) + s(x) + s(x)] + · · ·

}

, (10.57)

where the dots stand for possible charm quarks c(x), c(x) in the nucleon sea.
Invariance of the nucleon properties to isospin rotations implies that the same
u(x), d(x) quark distributions in the proton can be used for the neutron. The
isospin symmetry by up ↔ down quarks interchange in proton ↔ neutron
makes the up(x) [respectively dp(x)] distribution in the proton equal to the
dn(x) [respectively un(x)] distribution in the neutron:

up(x) = dn(x) ≡ u(x) , dp(x) = un(x) ≡ d(x) . (10.58)

From (58) we have

F n
2 (x) = x

{

4

9
[d(x) + d(x)] +

1

9
[u(x) + u(x) + s(x) + s(x)] + · · ·

}

. (10.59)

Since the nucleon has neither strangeness nor charm, one has

∫ 1

0

dx[s(x) − s(x)] =

∫ 1

0

dx[c(x)− c(x)] = 0 . (10.60)

Similarly, since the proton and neutron charges are respectively 1 and 0,

∫ 1

0

dx

{

2

3
[u(x) − u(x)] − 1

3
[d(x)− d(x)]

}

= 1 ,

∫ 1

0

dx

{

2

3
[d(x) − d(x)] − 1

3
[u(x)− u(x)]

}

= 0 , (10.61)

from which

∫ 1

0

dx[u(x)− u(x)] = 2 and

∫ 1

0

dx[d(x) − d(x)] = 1 . (10.62)

We now remark that the quark and antiquark distributions also appear in
deep inelastic neutrino scattering by nucleon (Chap. 12). Electromagnetic
and weak inclusive reactions are related, thus the quark parton model can
also be tested by neutrinos as projectiles. From experimental data on F p,n

2 (x)
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(by electromagnetic scattering) and on F ν
2,3(x) (by neutrino scattering), we

can extract the distributions u(x), d(x), s(x), u(x), d(x), and s(x) which are
constrained by the sum rules (60)–(62).

Indirect evidence for gluons emerges from the observation that the nu-
cleon total momentum must be shared by all of its contituents, gluons in-
cluded. Since each parton has a momentum zjP

µ, one must have the sum
rule

∑

j

∫ 1

0

(zjP
µ)Fj(zj)dzj = P µ =⇒

∑

j

∫ 1

0

xFj(x)dx = 1 . (10.63)

To estimate the quark and antiquark contributions to the above sum rule,
we now replace in (63) Fj(x) by the q(x), q(x) distributions. With (57) and
(59), their contributions can be written as

F p
2 (x) + F n

2 (x) =
5

9
x [u(x) + d(x) + u(x) + d(x)] +

2

9
x [s(x) + s(x)] . (10.64)

The sum F p
2 (x)+F n

2 (x) ≡ F I=0
2 (x) is obtained from data of electron scatter-

ing by an isoscalar target (deuteron). We rewrite (64) under the integrated
form

9

5

∫ 1

0

dxF I=0
2 (x) =

∫ 1

0

dx x

[

u(x) + d(x) + u(x) + d(x) +
2

5
[s(x) + s(x)]

]

.

The integration of the left-hand side of (64) is found to be 0.245 ± 0.02.
Provided that 3

5x [s(x) + s(x)] � 1, which is plausible for the sea, the above
equation may be written as

∑

j

∫ 1

0

dx x
[

qj(x) + qj(x)
]

≈ 9

5
(0.245± 0.02) = 0.44± 0.02 .

Comparing the above equation with (63), we find that the remaining (56∓2)%
of the nucleon momentum is carried away not by quarks and antiquarks but
by objects insensitive to photons, and gluons are natural candidates.

Finally, in terms of the scaling structure function F2(x) and the ratio R ≡
σL/σT = −1 + F2(x)/2xF1(x), the deep inelastic cross-section (44) can be
rewritten with a new variable y ≡ ν/E = (E−E′)/E which evidently satisfies
0 ≤ y ≤ 1. This energy loss variable y is also useful in the description of
deep inelastic neutrino scattering (Chap. 12). Since dQ2dν = 2ME ν dx dy,
we have

dσ(e + N → e + X)

dxdy
=

(2ME ν)dσ

dQ2dν
=

4πα2 s

Q4

{

F2(x)(1 − y) + xF1(x)y2
}

=
4πα2 s

Q4
F2(x)

{

(1 − y) +
y2

2(1 + R)

}

. (10.65)
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The above result is obtained by using the identity 2E(1−y) sin2(θ/2) = Mxy
and neglecting M2 � s ≈ 2ME. Since Q2 = s xy, (65) may be written as

dσ(e + N → e + X)

dxdQ2
=

4πα2

Q4

F2(x)

x

{

(1 − y) +
y2

2(1 + R)

}

. (10.66)

For each fixed value of x, the dσ/dy (or dσ/dQ2) distribution allows us to ex-
tract the structure function F2(x). When the violation of the Bjorken scaling
law is incorporated, (65) is usually written with F2(x, q2), its q2 dependence
is smoothly logarithmic as predicted by QCD and experimentally confirmed.

In summary, the photon is a powerful probe of the ultimate structure of
matter. The main reason for the photon usefulness is that in the one-photon
exchange of deep inelastic scattering, via `− → `− + γ∗, the invariant mass
squared q2 and the energy ν of the virtual photon γ∗ can be varied when the
latter strikes the hadronic constituents to explore their nature. We have seen
the crucial role of high q2, ν in elastic and deep inelastic scatterings. In pion–
nucleon collision taken as an example of the more general hadron–hadron
scattering, one cannot take advantage of the well-known photon exchanged
mechanism of the electromagnetic interaction, i.e. first we make two unknown
hadrons collide on each other, second we can only vary the pion energy but we
cannot change its mass which must be mπ . In this context, hadron–hadron
collisions are not the right way to discover the hadronic constituents. On the
other hand, in electromagnetic e–N scattering, only the strong interaction of
the struck hadron N is unknown. The more familiar photon, with both its
invariant mass and its energy increasing, is capable of revealing the hadronic
layers. Once the quarks and gluons are fully recognized as the fundamen-
tal constituents of matter, hadron–hadron collisions can be interpreted as
quark–quark, quark–gluon, gluon–gluon reactions in a subsequent step. Fur-
ther evidence for quarks is provided by the neutrino deep inelastic collision
(Chap. 12) and by the e+ + e− annihilation into hadrons. The total cross-
section of the latter process fits so well with the e+ + e− → q + q (see Sect.
7.5 and Chap. 14 where the QCD radiative corrections are included) that the
reality of color quarks can hardly be denied.

Problems

10.1 OPE Yukawa nucleon potential. Show that the matrix element
of the one pion exchange (OPE) between the two nucleons 1,2 can be written
as the difference of the direct and the exchange terms:

M = g2
πNN

[u(p′1, s
′
1) γ5 τj u(p1, s1)] [u(p′2, s

′
2) γ5 τj u(p2, s2)]

(p1 − p′1)
2 − m2

π

− exchange term [(p′1, s
′
1) ⇔ (p′2, s

′
2)].

Why the minus sign? Show that u(p′1, s
′
1) γ5 u(p1, s1) = χ

′†
1 (σ · q)χ1

def
=

σ1 · q where q = p1 − p′
1 in the center-of-mass system. χ is the standard
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two-component Pauli spinor describing the ±1/2 spin states of the nucleon
(Chap. 3). Then the nonrelativistic limit of the direct term is

Mdir(q) =
[−g2

πNN (τ 1 · τ 2)(σ1 · q)(σ2 · q)

|q|2 + m2
π

]

.

The nucleon–nucleon potential Vdir(x) is obtained from the Fourier transform
of Vdir(q), the latter is related to the invariant nucleon–nucleon scattering
matrix element M by Vdir(q) = Mdir(q)/4M2

N in the nonrelativistic limit

Vdir(x) =
1

(2π)3

∫

d3q eiq·xMdir(q)

4M2
N

.

Explain the origin of the denominator 4M2
N. Show that (r = |x|)

Vdir(x) =
g2

πNN

4π

m2
π

12M2
N

(τ 1 · τ 2)
{

σ1 ·σ2
e−mπr

r
+

[3σ1 · xσ2 · x
r2

− σ1 · σ2

]e−mπr

r

(

1 +
3

mπr
+

3

(mπr)2

)}

.

10.2 Normalization of Fπ(0). Show that at q2 = 0, the pion form
factor satisfies Fπ(0) = 1. Generalize it to the nucleon case and get F p

1 (0) =
1, F n

1 (0) = F n
2 (0) = 0.

10.3 Meson form factors. In terms of the electromagnetic form factor
Fπ(q2), write the amplitude of the reaction e+(p′)+e−(p) → π+(k′)+π−(k).
The timelike photon exchange (Fig. 10.1) is in the channel of the Mandelstam
variable s ≡ q2 = (k′ + k)2 > 0. In the center-of-mass (cm) system of e+e−,
show that the cross-section is given by

dσ

dΩcm
=

α2|Fπ(s)|2
8 s

(

1 − 4m2
π

s

)3/2

(1 − cos2 θcm) , p · k = |p| · |k| cos θcm .

So σ has a broad peak at s ≈ m2
ρ0 . Compare this result with the formula

(36) of the reaction e−(p) + π±(k) → e−(p′) + π±(k′), the spacelike photon
exchange is now in the t ≡ (k′ − k)2 ≤ 0 channel. What do we expect of the
cross-sections e+ + e− → K+ + K− , D+ + D− , B+ + B−?

10.4 β-decay of π±. The conserved vector current (CVC) relates the
(isospin 1) electromagnetic current Jµ

em to V µ, the flavor-conserving vector

part of the V µ − Aµ charged current in the d → u transition occurred for
example in neutron β decay. Show that

〈

π0(p′) |V µ |π±(p)
〉

=
√

2(p′ + p)µ Fπ(q2) .
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Compute the rate π+ → π0 + e+ + νe. Generalize to K
0 → K− + e+ + νe.

Why is the factor
√

2 absent in the K case ?

10.5 ρ0 decay. By dimensional argument, show that the couplings between
π± − W± and γ − ρ0 have the dimension of [mass]2. Write the amplitudes
π+ → e+ + νe and ρ0 → e+ + e− in terms of the decay constants fπ and
fρ0 ; both have the dimension of [mass] (Fig. 10.3a, b). The former amplitude
is proportional to the electron mass, whereas the latter is not. Therefore
Γ(π+ → e++νe) � Γ(π+ → µ++νµ). Using CVC, compute the ρ+ → e++νe

rate. Check the formulas (20), (21) of ρ0 → π+ + π− and ρ0 → e+ + e−.

10.6 Inverse Fourier transform of form factors. The distribution
ρ(r) of charge in hadrons can be obtained from the inverse Fourier transform
of the corresponding form factors in the nonrelativistic limit (q2 → −|q|2).
Show that

∫

d3q

(2π)3
eiq·x

1 − q2

Λ2

=
Λ2

4π

e−Λr

r
,

∫

d3q

(2π)3
eiq·xe

−q
2

Λ2 =
Λ3e−

Λ
2

r
2

4

8π
√

π
.

10.7 Omnès–Muskhelishvili form factor representation. According
to the Watson theorem, we have Fπ(s) = |Fπ(s)|eiδ(s), where δ(s) is the p-
wave phase-shift of π–π strong interaction. Write the dispersion relation for
G(s) ≡ log Fπ(s). Show that

Fπ(s) = exp
s

π

∫ ∞

4m2
π

δ(s′)

s′(s′ − s)
ds .

If the form factor Fπ(s) has zeros in the complex s plane, to avoid difficulties
when taking its logarithm, one may factorize Fπ(s) = P (s)Fπ(s) where the
polynome P (s) contains all the zeros of Fπ(s). Repeat the analysis with
F π(s). Consider now the function

H(s) ≡ logF π(s)
√

s − 4m2
π

.

First find the imaginary of H(s) in terms of |Fπ(s)|, the latter is measured
directly in e+ + e− → π+ + π− (Problem 10.3); then write the dispersion
relation for H(s).
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