
8 Gauge Field Theories

All the current successful theories of the fundamental forces start from the
premise of invariance of the physical laws to certain coordinate-dependent
transformations. In particular, the quantum field theories of the electromag-
netic, weak, and strong interactions of the fundamental particles all belong
to the class of local gauge theories, so called because they are invariant to
coordinate-dependent transformations on internal space of the particles. We
start this chapter by describing the general relation between symmetries and
interactions. Next, we take up the study of invariance under the Abelian
gauge group U(1), the group of space-time-dependent phase transformations
on charged fields; the resulting gauge theory is electrodynamics. The follow-
ing section is devoted to theories for which the gauge group is non-Abelian.
The results see immediate applications to quantum chromodynamics, a the-
ory based on the color SU(3) group. The last two sections of the chapter
contain a discussion on the mechanism of spontaneous symmetry breaking,
which is an indispensable ingredient in the formulation of the standard the-
ory of the electroweak interaction, the subject of the following chapter.

8.1 Symmetries and Interactions

In previous chapters, we have studied some of the implications of the con-
servation or violation of global symmetries that a theory may have. Under
a symmetry transformation of this kind, fields are changed by an identical
amount that remains fixed throughout space and time, and invariance of the
theory to such changes implies the existence of a conserved quantity.

Generally, when this symmetry is made local , whereby all the particle
fields are altered by an amount that varies with each space-time point, invari-
ance may be preserved provided a set of vector fields (or higher-rank tensor
fields) defined over all space-time is introduced into the theory to cancel the
long-range effects of the vector gradient of the transformation parameter and
to restore the symmetry. In particular, transformations in which this param-
eter is the phase-angle of the particle fields are called gauge transformations

and considered as internal , for they act on the labels of the particles rather
than on their space-time coordinates. If global, they give rise to conserved
charges, of which the electric charge is an example. If local, they may lead to
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an observable force. Three of the four existing fundamental interactions are
believed to be explicable in this fashion: the electric current is the source of
the electromagnetic force; the weak isospin and the weak hypercharge are the
sources of the unified electromagnetic and weak forces; and finally, the quark
colors, the sources of the strong interactions between quarks. It is not under-
stood why only those and no other conserved charges can produce observable
dynamical effects. As for the fourth fundamental force, gravitation, it may
be similarly viewed as arising from a local invariance, with the difference
that the transformations that leave the theory invariant act on space-time
coordinates themselves, and therefore the resulting force field, generated by
the conserved energy-momentum tensor, is tensorial rather than vectorial.
Otherwise, gravitation and gauge theories have close similarities with one
another.

In any nontrivial quantum field theory, divergent integrals may appear
in higher orders of the perturbation expansion of the transition amplitudes.
Renormalization is a procedure of removing these ultraviolet divergences by
adding extra terms, called counterterms, to the Lagrangian of the theory. A
theory is said to be renormalizable when all the counterterms induced by this
procedure are of the same form as terms in the original Lagrangian. A theory
with an interaction of mass dimension greater than four is nonrenormalizable,
although not all theories involving only interactions of mass dimension four or
less are necessarily renormalizable. All three gauge theories mentioned above
respect this simple but highly constraining demand of renormalizability. We
shall return to this topic in Chap. 15.

As mentioned above, the vector gauge fields introduced into the theory to
enforce gauge invariance have an infinite range or, equivalently, have no mass.
The photon, which is supposed to mediate the electromagnetic interaction,
is in effect observed to be massless (mγ < 6 × 10−16 eV). Experiment is
also consistent with the assumption that the gluons, the gauge fields of the
fundamental strong force, have vanishing masses. However, the weak forces
have always been known since their discovery to have a very short range.
So the gauge fields associated with the conserved weak charges in a gauge-
invariant theory cannot be immediately identified with the observed weak
forces. They must first acquire mass. But we are not allowed to introduce
artificially a mass term in the theory since this would break gauge invariance,
which would in turn make the theory divergent and thus nonpredictive. The
solution to this difficulty is to hide part of the gauge group, that is, to arrange
so that, while remaining exact in the underlying field equations, the gauge
symmetries are not realized in physical states. This spontaneous symmetry

breakdown is similar to the loss of symmetry during certain phase transitions
observed in condensed matter, such as the loss of translational symmetry
when liquid water turns into an ice crystal lattice below 0◦ C, or the loss of
rotational symmetry when a very large sample of ferromagnet acquires a net
magnetization below the Curie temperature.
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8.2 Abelian Gauge Invariance

In quantum electrodynamics (QED), the interaction of a charged particle
with an electromagnetic field is obtained by coupling the field with the elec-
tromagnetic current for the particle, an empirical rule known in classical
physics as the minimal coupling postulate. This rule can be better under-
stood in terms of a general symmetry principle, called the principle of gauge

invariance, susceptible of generalizations.
Consider, as a representative example of matter, a fermion field. The

Lagrangian density for a free Dirac field of mass m is

L0 = ψ(iγµ∂µ −m)ψ . (8.1)

It is invariant to the global phase transformation

ψ(x) → ψ′(x) = e−iqω ψ(x) , (8.2)

where ω is the transformation parameter, an arbitrary constant number,
independent of x . Another constant q has been inserted at this point to
accord with common usage; it will take on the meaning of the particle electric
charge in the present context. All operations (2) form a representation of the
single-parameter Abelian group U(1) , which is sometimes written with a
subscript, such as in UQ(1), to emphasize its association with a conserved
quantum number. It is crucial for the invariance of L0(ψ, ∂µψ) to the global
symmetry transformation (2) that the field gradient transforms exactly like
the field itself:

∂µψ(x) → ∂µψ
′(x) = e−iqω ∂µψ(x) . (8.3)

As discussed in Sect. 3.4, this invariance implies the existence of a locally
conserved current,

jµ(x) = q ψγµψ . (8.4)

The global transformation (2) can be generalized to the local transforma-
tion

ψ(x) → ψ′(x) = e−iqω(x) ψ(x) , (8.5)

where ω is now a real function of x, i.e. ω(x) defines an independent phase
transformation at each space-time point. However, the Lagrangian (1) and,
in general, any free-field Lagrangian cannot be invariant under this local
transformation because the transformation rule for the field gradient differs
from that for the field,

∂µψ(x) → ∂µψ
′(x) = e−iqω [∂µψ − iq(∂µω)ψ ] , (8.6)
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so that the transformed free-field Lagrangian acquires an extra term which
spoils the invariance:

L0 → L′
0 = L0 + q ψγµψ ∂µω = L0 + jµ∂µω . (8.7)

The presence of a symmetry-violating term in (7) suggests that if we
wish to make the theory invariant under (5), it is necessary to introduce a
vector field Aµ that couples to the particle current so that this coupling when
transformed may cancel jµ∂µω . The modified Lagrangian

L1 = L0 − jµAµ (8.8)

transforms under (5) as

L1 → L′
1 = L′

0 − j′µA′
µ = L0 + jµ ∂µω − jµ A′

µ (8.9)

(since j′µ = q ψ
′
γµψ

′ = jµ). Invariance of L1 then requires the vector field to
have the property

Aµ → A′
µ = Aµ + ∂µω (8.10)

under the transformation that acts on ψ according to (5). The ‘scale’ of the
vector field has changed. Thus, the quantum theory of electrically charged
particles is said to have local phase-angle independence – referring to the
change of matter field in (5) – or more currently, local gauge invariance
– emphasizing the scale change of the force field in (10). The field Aµ is
accordingly called a gauge field. Rewriting the Lagrangian as

L1 = ψ(iγµ∂µ −m)ψ − q ψγµψAµ = ψ(iγµDµ −m)ψ , (8.11)

where

Dµ ≡ ∂µ + iqAµ , (8.12)

we observe that the gauge invariance of L1 has been realized by making the
field gradient transform covariantly, that is,

Dµψ → D′
µψ

′ = eiqω Dµψ , (8.13)

and, for this reason, Dµ is called a covariant derivative for this gauge group.
To make the vector field an integral part of the dynamic system, it is necessary
to introduce gauge-invariant terms built up from Aµ and its derivatives. The
combination

Fµν = ∂µAν − ∂νAµ
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is invariant under (10), whereas

∂µAν + ∂νAµ

is not. Therefore, the Lorentz scalar −1
4FµνF

µν (with a conventional nor-
malization factor) may be added to the Lagrangian. The mass term AµA

µ is
not allowed since it is not invariant under (10). So the final gauge-invariant
Lagrangian looks like

L1 = ψ(iγµDµ −m)ψ − 1

4
FµνF

µν . (8.14)

The term εµνρσ FµνFρσ , which is equally gauge-invariant and of dimension
four, need not be included because it may be rewritten as the divergence
of a current, ∂µK

µ, and therefore contributes only as a surface term to the
action. Under the usual assumption that fields vanish at infinity, it may
be discarded. Other higher-dimensional gauge-invariant couplings, such as
ψσµνψF

µν, are not allowed by the requirement of renormalizability. When
the fields that appear here are reinterpreted as quantum fields, (14) is just
the familiar form of the QED Lagrangian for a Dirac particle of charge q
interacting with the electromagnetic field. It is the most general U(1)-gauge-
invariant dimension-four renormalizable Lagrangian, and it is in extremely
good agreement with experiment.

Thus, we have shown that, when a free-field theory has an exact global
phase symmetry, it may have the corresponding local phase invariance only
upon becoming an interacting field theory involving a massless vector field
(the photon) which interacts with the charged particle in a well-defined man-
ner. In Abelian theories such as this one, there are no restrictions on the
coupling strength between the gauge field and matter fields; the electron has
charge q = −e while another particle may carry any other charge q = ze.
But the interaction appears in the same form regardless of the nature of the
particle, be it lepton, quark, or hadron. That the interaction derived from
imposing renormalizability and some kind of gauge invariance on the theory
is unique and universal is precisely what has made this symmetry condi-
tion – the gauge invariance principle – so powerful that it has now become
the guiding principle in the search for the theories of interactions in particle
physics.

8.3 Non-Abelian Gauge Invariance

As particles usually come in multiplets, we might wonder what kind of gauge
fields and interactions the principle of gauge invariance would imply in gen-
eral. Suppose, for example, we have a number of Dirac spinor fields ψa (with
a = 1, . . . , n describing some internal degree of freedom, such as isospin or
color) that form such a multiplet, ψ; that is to say, they have equal masses,
ma = m, and transform into one another by the rule

ψa → ψ′a = Ua
b ψ

b , (8.15)
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where U is a unitary n × n matrix. In the following, we will further limit
ourselves to unimodular matrices, so that detU = 1. All such matrices define
some representation of a Lie group, G. To simplify, we also assume that G is
a simple group and ψ belongs to its fundamental representation.

Unitary unimodular matrices U may be parameterized by N = n2 − 1
real phase-angles ωi in the form

U = exp(−igTiωi) , (8.16)

where, as usual, a sum over repeated indices is implied. The real constant
factor g, common to all terms in the sum, will turn out to be a coupling
constant. Transformations very near the identity are given by 1 − igTiωi,
and for this reason the matrices Ti are called the generators of infinitesimal
transformations. They are Hermitian and traceless, T †

i = Ti and TrTi = 0 ,
as respective consequences of the unitarity and unimodularity of U . They
constitute a basis of a Lie algebra, and must satisfy commutation relations
of the form

[Ti, Tj] = ifijk Tk , for i, j, k = 1, . . . , N . (8.17)

When not all the structure constants fijk vanish, these relations define a
non-Abelian algebra. It is convenient to normalize the generators such that

Tr (TiTj) = 1
2 δij . (8.18)

For G=SU(2), the generators in the fundamental representation are given
by the familiar 2 × 2 Pauli matrices, Ti = 1

2 τi, with i = 1, 2, 3, while for
G=SU(3), Ti = 1

2 λi, with i = 1, . . . , 8, are the 3 × 3 Gell-Mann matrices.
The free-field Lagrangian, assumed independent of the internal degree of

freedom, is given by

L0 = ψa (iγµ∂µ −m)ψa = ψ (iγµ∂µ −m) ψ . (8.19)

In the second equation, the operator contains an implicit unit matrix defined
on the n-dimensional space of the group representation.

The free-field Lagrangian is invariant under the gauge transformation (15)
provided it is a global transformation, independent of space-time coordinates
x . The conserved fermion currents that follow from this invariance are given
by Noether’s theorem:

jµ
i = gψ γµTiψ . (8.20)

For the isospin group SU(2), they are the conserved isospin currents.
On the other hand, if U represents a local transformation, which depends

on the space-time point where it acts, U = U(x), then the free-field La-
grangian will not be invariant in general, but will rather vary as

L0 → L′
0 = L0 +ψ iγµ(U †∂µU)ψ , (8.21)
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where the symmetry-violating term arises from differences in the transforma-
tion rules for the field and the field gradient:

ψ → ψ ′ = Uψ, (8.22)

∂µψ → ∂µψ
′ = U ∂µψ + (∂µU)ψ . (8.23)

This suggests that we must introduce extra fields with couplings to the
Noether currents similar in form to the second term on the right-hand side
of (21) to compensate for this unwanted term. The modified Lagrangian

L1 = L0 − gψγµAµψ , (8.24)

where Aµ is an n× n Hermitian traceless matrix whose elements are vector
fields, transforms as

L1 → L′
1 = L′

0 − gψ ′γµA′
µψ

′

= L0 +ψ iγµ(U †∂µU)ψ − gψ γµ U †A′
µU ψ . (8.25)

The demand that L1 be invariant in this operation requires

ψ iγµ(U †∂µU)ψ − gψγµ U †A′
µU ψ = −gψγµAµψ .

Thus, in a gauge transformation that acts on ψ according to (15), the vector
field has the transformation property

Aµ → A′
µ =

i

g
(∂µU)U † + UAµU

† . (8.26)

For most practical purposes it suffices to restrict ωi(x) to infinitesimal
values so that, to first order,

U ≈ 1 − igω , (8.27)

where ω = ωjTj . To this order, the fermion field transforms as

ψ′ =Uψ ≈ ψ + δψ ,

δψ = − igωψ ,
(8.28)

or in components

δψa = −ig ωj (Tj)
a

b ψ
b for a = 1, . . . , n . (8.29)

There are (n2 − 1) local gauge fields Ajµ, which are independent of the
representation of the particle fields ψ and which form the elements of the
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matrices Aµ. They are chosen so that Aµ = AjµTj . To first order, the
transformation rule (26) for the gauge field matrix becomes

A
′
µ =

i

g
(∂µU)U † + UAµU

† ≈ Aµ + δAµ ,

δAµ = ∂µω + ig [Aµ,ω ] , (8.30)

or in components

δAiµ = ∂µωi − g fijk Ajµ ωk for i = 1, . . . , n2 − 1 . (8.31)

If G is Abelian, (31) reduces to

δAiµ = ∂µωi (Abelian group) .

It corresponds to the first, inhomogeneous term in (31) and implies that the
vector fields Aiµ have as sources the currents jµ

i , just as the transformation
rule for the electromagnetic field identifies the electric current as its source.
If, on the other hand, G is a non-Abelian group of global symmetry, the
transformation rule becomes

δAiµ = −g fijk Ajµ ωk (global symmetry) .

The right-hand side of this equation is the same in form as the right-hand side
of (29) with (Tj)

a
b replaced by −ifjab, which indicates that the gauge fields

Aiµ belong to the adjoint representation of the group; that is, for example,
they transform as an isovector in SU(2) and as an octet in SU(3).

In terms of the covariant derivative for the non-Abelian gauge group G

Dµ = ∂µ + igAµ , (8.32)

which obeys the relation

D′
µUψ = UDµψ , (8.33)

the Lagrangian (24) takes the form

L1 = ψ iγµ (∂µ + igAµ)ψ −mψψ = ψ (iγµDµ −m)ψ . (8.34)

To this Lagrangian must be added contributions from the gauge fields them-
selves. In analogy with the identity

[Dµ, Dν ]ψ = iq Fµνψ , (8.35)

which is satisfied by the electromagnetic field strength, we may define the
field tensor in the non-Abelian case by the generalized relation

[Dµ, Dν ]ψ ≡ igFµνψ . (8.36)



8.3 Non-Abelian Gauge Invariance 275

Under the gauge transformation U , the left-hand side of (36) gives

[D′
µ, D

′
ν ]Uψ = U [Dµ, Dν ]ψ = ig UFµνψ ,

where (33) has been used, while the right-hand side becomes

igF ′
µν ψ

′ = igF ′
µν Uψ .

Therefore, identifying the right-hand sides of the last two equations yields

F ′
µν = UFµνU

† ≈ Fµν + ig [Fµν , ω ] . (8.37)

Thus, we have learned that the non-Abelian field strength is not invariant,
merely covariant; it transforms under (26) as an adjoint multiplet, just like
Aµ but without an inhomogeneous term. Since Fµν is an n × n matrix, it
decomposes as

Fµν = F i
µν Ti , (8.38)

where the expression

F i
µν = ∂µA

i
ν − ∂νA

i
µ − g fijk A

j
µA

k
ν (8.39)

shows that the field strengths are independent of the fermion representation
chosen in the defining relation (36). The kinetic term in the electromagnetic
Lagrangian admits as non-Abelian generalization

Tr (FµνF
µν) , (8.40)

which is both Lorentz- and gauge-invariant, as it should be. With the help
of the orthonormality relation (18) for Ti, it may also be rewritten as

Tr (FµνF
µν) = F i

µνF
µν
j Tr(TiTj) = 1

2 F
i
µνF

µν
i . (8.41)

To summarize, the free-field Lagrangian (19) is invariant in the global
non-Abelian symmetry group (15), but not in the corresponding local gauge
group. Application of the principle of gauge invariance turns it into an in-
teracting field theory when one introduces vector gauge fields, as many fields
as there are generators in the gauge group and appropriately coupled to the
conserved vector currents (20). The first theory of this type [for the case
of the isospin SU(2) group] was constructed by C. N. Yang and R. L. Mills;
for this reason a theory invariant under a local non-Abelian gauge group is
frequently referred to as a Yang–Mills theory.

The full gauge-invariant Lagrangian for Dirac spinor fields interacting
with vector gauge fields is

L = L1 + LG , (8.42)
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where

L1 = ψ (iγµDµ −m)ψ

= ψ (iγµ∂µ −m)ψ − g Aiµψ γ
µTiψ ; (8.43)

and

LG = −1

2
Tr (FµνF

µν)

= −1

4
Bi

µνB
µν
i +

g

2
fijk B

i
µνA

µ
j A

ν
k − g2

4
fijkfi`mAjµAkνA

µ
`A

ν
m , (8.44)

together with the definition

Bi
µν ≡ ∂µA

i
ν − ∂νA

i
µ . (8.45)

The spinor fields transform as some representation of the gauge group,
but the gauge fields must belong to the adjoint representation. Since it is
not possible to construct gauge-invariant mass terms, the gauge fields are
necessarily massless, just as in the Abelian case. However, in contrast to the
Abelian case, the part of the Lagrangian that describes the gauge fields, LG,
constitutes by itself a nontrivial interacting theory (pure Yang–Mills theory):
besides the expected kinetic terms, it includes self-couplings stemming from
the nonlinear expression (39), with coupling strengths that depend on the
single constant g . The physical reason for the presence of these couplings
can be easily understood: each non-Abelian gauge field Aµ

i carries a charge
characteristic of the group and labeled by the index i, and so it must couple to
every field carrying any such charge, including itself and other members of the
gauge multiplet. Exactly for the same reason, gravitation is also an inherently
nonlinear theory because the gravitational field interacts with everything that
has energy density, including itself.

We have considered so far a simple Lie group as the gauge group: in this
case, the generators of the group transform irreducibly under the action of
the group and therefore must have the same coupling constant g, regardless of
the representation. Basically, g cannot be arbitrarily scaled, its normalization
being fixed by the commutation relations characteristic of the group. This is
in sharp contrast with the UQ(1) case, where there are no such constraints
on the coupling constant q, which may assume different values for different
representations. If the gauge group is a direct product of simple group factors,
e.g. SU(m)×SU(n), generators of the different factors do not mix under the
action of the group, and an independent gauge coupling constant comes with
each factor in the product group. Finally, let us note that we may add,
in a simple generalization of the above discussion, any other matter fields
belonging to any other representations of the gauge group with appropriate
matrices Ti. In particular, it is possible to have the left- and the right-
handed components of Dirac fields transforming independently as different
representations of the gauge group.
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8.4 Quantum Chromodynamics

Although historically the non-Abelian gauge principle was first used to for-
mulate a unified theory of weak and electromagnetic interactions, the theory
of strong interactions of quarks is the more obvious extension of quantum
electrodynamics because the gauge symmetry on which it is based is a simple
Lie group and also because the symmetry remains manifestly intact through-
out. This theory marks the culmination of significant progress made over
many years on two levels in the study of the physics of elementary particles.

On the one hand, major quantitative advances were achieved by the quark
model in correlating detailed data in hadron spectroscopy (masses, decay
rates, etc.) and by the parton model in describing the scaling phenomenon
as observed in deeply inelastic, large momentum-transfer processes (such as
ep → e+X and e+e− → hadrons). Here parton is the generic name given by
Feynman to an independently moving constituent within a hadron, of which
the quark is but an example, and scaling refers to the property, predicted by
J. D. Bjorken, that the structure functions appearing in the cross-sections
of deeply inelastic, hard processes depend only on a certain dimensionless
combination of energy variables. (The structure functions give the probability
of finding a parton inside a hadron carrying a certain fraction of the hadron’s
momentum.) The success of the quark-parton model implies that the hadron,
when viewed in a frame in which its momentum is very large, is composed of
almost-free constituents; in other words, quarks can interact weakly at short
distances (see Chaps. 10, 12). Another key result drawn from these studies is
that quarks have a three-valued quantum number, called color. Observations
require exact color symmetry and the absence of isolated color multiplets
other than singlets; this suggests that the forces between the colored quarks
must be color dependent or, equivalently, they must carry ‘color charges’.

On the other hand, important new ideas emerged from developments in
quantum field theory. These ideas revolve around the demand of renormal-
izability of physical theories and the notion of energy-dependent coupling
strengths. To make sense, a quantum field theory must be finite or can be
made finite (renormalized) by introducing a finite number of counterterms
into the original Lagrangian without changing its basic form. Renormalizabil-
ity in theories involving vector quanta can be ensured by gauge invariance.
In a renormalization procedure, the kinematic point at which the physical
parameters, such as the mass and the coupling constant, are defined is ar-
bitrary. However, since the physical content of the theory should remain
invariant under a mere change of the normalization condition, there must be
relations between physical quantities taken at different reference points. The
coupling constant, for example, should be regarded as a function of the ref-
erence point and, in this sense, is energy and momentum dependent. When
this effective coupling constant decreases as the relevant energy scale grows
(or, equivalently, as distances shrink), the theory is said to be asymptotically

free. Asymptotic freedom offers a possible explanation for Bjorken’s scaling
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and is part of the reason why quarks and other hadronic constituents be-
have as if weakly bound inside a target nucleon, yet are not produced as free
particles in final states of deep inelastic scatterings. This suggests that the
field theory of strong interactions must be asymptotically free. We now know
that all pure Yang–Mills theories based on groups without Abelian factors
are asymptotically free, and theories of non-Abelian gauge fields and fermion
multiplets are asymptotically free only if the theory does not have too many
fermions. This means, for example, if the gauge group is SU(3) the number
of fermion triplets is limited to sixteen or less. Another known result is that
a renormalizable field theory cannot be asymptotically free unless it involves
non-Abelian gauge fields. (A more detailed discussion is found in Chap. 15.)

The QCD Lagrangian. All this leads to the conviction that the strong
interactions should be described by non-Abelian gauge fields and that it is
the color symmetry that should be gauged. The resulting theory is a Yang–
Mills theory based on the color SU(3) group, containing eight vector gauge
bosons called gluons, together with different flavors of quarks, each trans-
forming as the fundamental triplet representation. It is assumed in addition
that the color gauge invariance remains exact, unbroken by any mechanism,
so that the gluons remain massless. The theory, called quantum chromody-

namics (Gross and Wilczek 1973; Fritzsch, Gell-Mann, and Leutwyler 1973;
Weinberg 1973), has a Lagrangian of the form

LQCD = −1

4
F i

µνF
µν
i +

Nf
∑

A=1

ψ̄
A

(iγµDµ −mA)ψA , (8.46)

where

F i
µν = ∂µG

i
ν − ∂νG

i
µ − gs fijk G

j
µG

k
ν ,

Dµψ
A
a = ∂µψ

A
a + i

2gsGiµ (λi)ab ψ
A
b . (8.47)

The matrices λi, with i = 1, . . . , 8 as internal symmetry index, are the usual
Gell-Mann matrices that satisfy the SU(3) Lie algebra

[λi, λj] = 2 i fijkλk . (8.48)

The fijk are the SU(3) structure constants. There are 32−1 = 8 gluon fields,
Gi

µ, and Nf = 6 quark color-triplets, ψA
a with A = 1, . . . , Nf denoting the

flavors and a = 1, 2, 3 denoting the colors. The complete quark content of
the model is

ψA
a :





u1

u2

u3



 ,





d1

d2

d3



 ,





c1
c2
c3



 ,





s1
s2
s3



 ,





t1
t2
t3



 ,





b1
b2
b3



 . (8.49)

Since the gluons are flavor-neutral, that is, u, d, s, c, t, and b quarks
have exactly the same strong interactions, the QCD Lagrangian (46) has all
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the flavor symmetries of a free-quark model, which are only broken by a lack
of degeneracy in the quark masses. In particular, it conserves strangeness,
charm, etc.. It also clearly has all the well-known strong interaction symme-
tries, such as invariance under charge conjugation and space inversion.

Approaches to Solutions. The Lagrangian (46) contains Nf + 1 param-
eters: the quark masses, one for each flavor, plus one dimensionless coupling
constant, gs. (Actually there is another parameter hidden, a vacuum angle
related to the possibility of strong CP violation, which is however experi-
mentally found consistent with zero.) With the fields second quantized, (46)
forms the basis for a quantum description of the quark dynamics, and should
in principle describe all the world of strong interactions. This description
separates naturally into two regions: the short-distance (large invariant mo-
mentum transfer) regime in which the effective coupling strength is weak,
and quarks and gluons may be treated as if they were free particles; and the
large-distance (small invariant momentum transfer) regime in which the full
force of the strong coupling comes into play.

In the short-distance regime, asymptotic freedom makes QCD calculable
by perturbative methods under the right circumstances, and that is when
the long-distance effects are irrelevant or can be factored out. Processes
amenable to this kind of treatment include, but are not restricted to, deep
inelastic lepton–hadron scattering (e + p → e′+hadrons), electron–positron
annihilation (e+e− → hadrons), large invariant mass lepton-pair production
(p+p → µ+µ−+ hadrons) and jet phenomena. The successes of perturbative
QCD in calculating strong interaction corrections beyond the leading order
make quantitative analyses of these processes possible, and contribute to
reinforcing the general belief that QCD is an essentially correct theory of the
strong interaction (see Chaps. 14, 16).

The situation is much more complex in the large-distance domain. If the
gluons are massless, as they are assumed to be in QCD, why have long-range
strong interactions never been detected? If the strong interactions are color
dependent, why are color singlets only ever observed? This is the famous
outstanding problem of color confinement. Many methods have been devised
to deal with this aspect of the strong interaction, among which the most
promising consists in formulating the gauge theory on a lattice, in which
the space-time continuum is discretized. The lattice spacing thus introduced
provides a natural cutoff for momenta and allows for a natural regularization
scheme in the study of the long-range properties of QCD. The gauge fields
appear there as gauge-invariant dynamical variables associated with links
joining adjacent lattice points; because of gauge invariance, link variables
must either form closed loops or begin and end on color sources (see Fig. 8.1).

A formulation on the lattice makes feasible expansions independent of
the perturbation theory; it turns out that it is in fact simpler to perform
an expansion in powers of 1/g2

s , so that the lattice gauge theory can be
treated as a perturbation in the strong coupling limit. It is then possible to
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study various physical quantities by computer simulation based on the Monte
Carlo method in which loop configurations are sampled rather than summed
over. Considerable progress has been made to the point where true precision
hadron mass calculations can be performed for heavy quarkonium systems
and heavy–light quark systems (although the light hadron spectroscopy still
eludes concerted efforts). We will not study the lattice gauge theory or any
other nonperturbative methods of gauge theory in this book, but rather refer
the reader to the series of ‘Lattice’ Conference Proceedings for more recent
developments.
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Fig. 8.1. (a) Simplest gluonic bound state; (b) simplest qq̄ bound state in lattice
gauge theory

Feynman Rules for QCD. We will end this section by giving a derivation
of the Feynman rules for the tree diagrams in perturbative QCD. The rules
are written in momentum space, where any field is represented by a Fourier
transform of itself in space-time:

A(p) =

∫

d4x eip·xA(x) . (8.50)

The propagator for a quark is similar to that for the electron found in Chap. 4,

i(SF(p))βαδbaδBA =

(

i

6p−mA + iε

)

βα

δbaδBA . (8.51)

Each quark line is associated with three indices: A for family, a for color,
and α for spinor. The quark–gluon coupling contained in (46)

L0
h = −gs ψ̄(x)γµ λi

2
ψ(x)Giµ(x) (8.52)

contributes i
∫

d4xL0
h to the action, which leads to the quark–gluon vertex

−igs (γµ)βα

(λi)ba

2
δBA . (8.53)

The pure gauge part of the Lagrangian (46) is

LG = −1

4
F i

µνF
µν
i

= −1

4
Gi

µνG
µν
i +

gs
2
fijk G

i
µνG

µ
jG

ν
k − g2

s

4
fijkfi`m GjµGkνG

µ
`G

ν
m, (8.54)
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where

Gi
µν = ∂µG

i
ν − ∂νG

i
µ . (8.55)

To derive the gluon propagator, we isolate the kinetic term in (54)

L0
G = −1

4
Giµν(x)Gµν

i (x) , (8.56)

which corresponds to the action

∫

d4xL0
G = −1

2

∫

d4x ∂µGiν (∂µGν
i − ∂νGµ

i )

= −1

2

∫

d4p

(2π)4
Gµ

i (−p) p2

(

gµν − pµpν

p2

)

Gν
i (p) . (8.57)

The integrand contains the reciprocal of the propagator. In order to invert it,
one would find it convenient to introduce first the transverse and longitudinal
projection operators

PT
µν = gµν − pµpν

p2
, P L

µν =
pµpν

p2
, (8.58)

which have the properties

(

PT
µν

)2
= PT

µν ;
(

P L
µν

)2
= P L

µν ; P L
µνP

T
µν = 0 ; PT

µν +P L
µν = gµν .(8.59)

Then the inverse propagator from (57) may be rewritten as

[Dµν(p) ]
−1

= −p2PT
µν + 0P L

µν . (8.60)

It is a purely transverse, singular operator, and therefore cannot be inverted.
This difficulty stems from the fact that, just as for the photon, not all compo-
nents of the gluon fields are physical. In order to calculate physical quantities,
it is necessary to exclude the unphysical field components and select a definite
gauge in which calculations are to be done. In the Lagrangian formalism, the
gauge selection may be made from the start by introducing an extra term
into the Lagrangian itself. This gauge-fixing term may be chosen as

LGF =
−1

2ξ
∂µG

µ
i ∂νG

ν
i =

1

2ξ
Gµ

i ∂µ∂νG
ν
i + total derivative , (8.61)

where ξ is a real parameter corresponding to different gauges (e.g. ξ = 1 for
Feynman gauge and ξ = 0 for Landau gauge) and should not affect physical
quantities. The terms quadratic in the fields in the action then yield

∫

d4x (L0
G + LGF) =

1

2

∫

d4p

(2π)4
Gµ

i (−p)
[

−gµνp
2 + (1 − ξ−1)pµpν

]

Gν
i (p) .
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The inverse gluon propagator can be immediately read off:

D−1
µν (p) = −gµνp

2 + (1 − ξ−1)pµpν = −p2PT
µν − ξ−1p2P L

µν . (8.62)

It is now nonsingular as long as ξ 6= ∞, and admits as its inverse

Dµν(p) = − 1

p2 + iε
PT

µν − ξ

p2 + iε
P L

µν . (8.63)

To each gluon internal line, we thus assign the expression

iDµν(p)δij =
i

p2 + iε

[

−gµν +
(1 − ξ)pµpν

p2 + iε

]

δij . (8.64)

To obtain the Feynman rules for the gluon interaction vertices, we Fourier
transform the remaining terms in (54). For the three-gluon coupling we get

i

∫

d4xL1
G(three gluons) =

1

2
gsfijk

∫

d4p d4q d4r

(2π)12
(2π)4δ(4)(p+ q + r)

× [gλνpµ − gλµpν ]Gλ
i (p)Gµ

j (q)Gν
k(r) . (8.65)

Using the antisymmetry of fijk in its indices and the invariance of the whole
expression under simultaneous permutations of its indices, we interchange
i, λ, p with j, µ, q, and i, λ, p with k, ν, r to obtain a fully symmetrized
expression

i

∫

d4xL1
G =

1

6
gsfijk

∫

d4p d4q d4r

(2π)8
δ(4)(p + q + r)Gλ

i (p)Gµ
j (q)Gν

k(r)

× [gλνpµ − gλµpν − gµνqλ + gλµqν − gλνrµ + gµνrλ]

=
1

3!
gsfijk

∫

d4p d4q d4r

(2π)8
δ(4)(p+ q + r)Gλ

i (p)Gµ
j (q)Gν

k(r)

× [gλν(p− r)µ + gλµ(q − p)ν + gµν(r − q)λ] . (8.66)

The Feynman rule for three-gluon vertex can then be read off:

gs fijk [ gλν(p− r)µ + gλµ(q − p)ν + gµν(r − q)λ ] , (8.67)

subject to four-momentum conservation

p+ q + r = 0 . (8.68)

A similar symmetrization is applied to the four-gluon coupling:

i

∫

d4xL2
G(four gluons) =

1

4

∫

d4p d4q d4r d4s

(2π)16
(2π)4δ(4)(p+ q + r + s)

×Gλ
i (p)Gµ

j (q)Gν
k(r)Gρ

` (s) (−ig2
s ) fnijfnk` gλνgµρ

=
1

4!

∫

d4p d4q d4r d4s

(2π)12
δ(4)(p+ q + r + s)Gλ

i (p)Gµ
j (q)Gν

k(r)Gρ
` (s)

× (−ig2
s )
[

fnijfnk`(gλνgµρ − gµνgλρ) + fnkjfni`(gλνgµρ − gλµgνρ)

+ fnikfnj`(gλµgνρ − gµνgλρ)
]

. (8.69)
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s [fijmfk`m(gλνgµρ − gµνgλρ)
+ fikmfj`m(gλµgνρ − gµνgλρ)
+ fkjmfi`m(gλνgµρ − gλµgνρ)]

(p + q + r + s = 0)

Fig. 8.2. Feynman rules for QCD tree diagrams

This yields the Feynman rule for the four-gluon vertex:

(−ig2
s )
[

fnijfnk`(gλνgµρ − gµνgλρ) + fnkjfni`(gλνgµρ − gλµgνρ)

+ fnikfnj`(gλµgνρ − gµνgλρ)
]

(8.70)

with four-momentum conservation at the vertex

p+ q + r + s = 0 . (8.71)

The Feynman rules thus derived from the Lagrangian (46) are summa-
rized in Fig. 8.2. However, as rules for QCD, they are not complete. In a
full quantum formulation of QCD in a covariant gauge like (61), an addi-
tional, nonphysical (ghost) field has to be introduced, whose main effect is to
suppress the nontransverse components of real gluons while preserving gauge
invariance (see Chap. 15). A complete list of the Feynman rules for QCD is
given in the Appendix.

8.5 Spontaneous Breaking of Global Symmetries

Experiment shows that quantum electrodynamics is a gauge theory consistent
in all aspects with the principle of gauge invariance applied to the UQ(1)
group. In particular, the photon can be identified with the massless gauge
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field of the group and interacts just as expected with the conserved fermion
current that follows from the gauge symmetry.

On the other hand, in spite of its apparently distinctive properties (e.g. a
much shorter force range, a greater diversity in transition modes), the weak
interaction gives clear hints to its close parentage with the electromagnetic
interaction. In particular, the currents found in many weak processes are
electrically charged and have precisely the form implied by a non-Abelian
symmetry based on a certain semisimple group. It is thus quite possible that
there exists a gauge theory that can describe both weak and electromagnetic
interactions. However, as we have seen earlier in this chapter, the gauge
fields required by gauge invariance must apparently be massless and must
therefore generate long-range forces. In order to construct a gauge theory of
this kind for weak interactions, one is then confronted with the problem of
reconciling the presence of massive gauge fields needed to generate the short-
range weak forces actually observed with the preservation in some sense of
gauge invariance essential for a renormalizable theory.

One way of generating masses for vector bosons without destroying the
underlying gauge symmetry of the theory is by ‘spontaneously’ breaking that
symmetry. This phrase refers to a process in which, from a set of degenerate
minimum energy states that are equivalent by symmetry, one arbitrarily se-
lects a member of the multiplet as the physical ground state of the system in
apparent violation of the underlying symmetry. But in reality the symmetry
is not lost in the process, it is merely hidden and can be recovered through
special relations between masses and couplings. That it is possible to pick the
ground state in this way simply reflects the fact, fairly widespread in nature,
that physical states may exist with a symmetry apparently lower than that
of the basic equations of motion.

8.5.1 The Basic Idea

To understand the idea of spontaneous breakdown of symmetry, let us men-
tally consider a large sample of ferromagnetic material at 0◦ K in the absence
of any external field. A ferromagnet is viewed in the Heisenberg model as
an infinite regular array of spin- 1

2 magnetic dipoles with spin–spin interac-
tions between nearest neighbors such that neighboring dipoles tend to align.
Although the Hamiltonian describing the system is rotationally invariant,
the ground state is not always. At high temperatures, thermal agitations
will make the magnetic moments flutter at random in different directions,
so that there is no net magnetization, which results in a rotationally sym-
metric state endowed with the same symmetry as the law of interaction. If
the ferromagnet is now sufficiently cooled down (below a certain critical tem-
perature, called the Curie temperature), all the atomic dipole moments will
tend to align parallel to each other and to some arbitrary direction, lead-
ing to a nonzero magnetization for the sample. This is one of the infinitely
many degenerate lowest-energy states that exist for an infinite ferromagnet,
and the symmetry resides hidden in the equivalence of these states through
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rotations. Transitions between these states are not possible, because for an
infinite ferromagnet any single transition would require an infinite amount of
energy. The particular ground state the system ‘spontaneously’ falls into as it
cools down cannot be foreseen, and certainly is not symmetric since the mag-
netization points in a definite direction; it corresponds to a magnetization
vector M with magnitude M such that the free energy F of the ferromagnet
is minimum, as shown in Fig. 8.3.

.............................................................................................................................................................................................................................................................................................. ..............

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...............

..............

.............................................
.........
.......
.........
.......
......
......
......
.....
......
......
......
......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
.

..................................................................................................
.....
.....
...............
............
.........
.........
........
.......
.......
......
......
......
.....
.....
.....
.....
.....
....
....
....
....
....
....
....
....
....
....
....
...
....
...
....
...
...
...

F

M0

T > Tc

T < Tc

Fig. 8.3. Free energy F of a ferromagnet as function of magnetization M

We now attempt to transfer this insight to relativistic quantum mechan-
ics, substituting a particle Hamiltonian (or Lagrangian) for the ferromagnet
Hamiltonian, the particle vacuum for the ferromagnet ground state and some
other symmetry for rotational symmetry. Specifically, assuming nature to
possess symmetries that are not manifest to us because we live in an im-
perfectly symmetric universe, we will take the Lagrangian that defines the
particle theory to be invariant in some internal symmetry, but the parti-
cle vacuum to be lacking this symmetry. This asymmetric state is realized
by requiring that the vacuum-to-vacuum expectation value of some field be
nonvanishing, much as the ferromagnetic ground state was determined by
a nonzero magnetization. The field in question cannot have a nonzero spin
because otherwise the vacuum would be characterized by a nonzero angu-
lar momentum and rotational invariance would have been broken. Since the
vacuum is observed to be rotationally invariant the field must be spinless,
and the internal symmetry of the theory must be broken by a scalar field
acquiring a nonzero vacuum expectation value. As translation invariance is
also an observed symmetry of particle physics, this expectation value must
not depend on space-time in the absence of any source. The basic conjecture
is that there exist, beside matter and gauge fields, one or more spin-0 fields,
called the Higgs fields, which would assume uniform nonzero values even in
the vacuum and which could couple to each other and to other, massless
particles to give them masses.

A quantum-mechanical vacuum is a complex state filled with pairs of
virtual particles and antiparticles continuously being created and annihilated.
If those virtual particles interact strongly enough among themselves, they
might form a permanent state of high density, called a vacuum condensate.
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There is a thermodynamic transition point separating the vacuum without a
condensate from the vacuum with a condensate. For a condensate to form,
there must be a strong enough attraction among the particles at low density,
but also a strong enough repulsion at high density to prevent a runaway
situation to occur. It is believed that such a situation exists in the world
of the fundamental particles, where the vacuum is filled with a high density
of Higgs fields, the Higgs condensate. By interacting with the light particles
(bosons and fermions) that populate this vacuum, the condensate drags them
sufficiently down to make them massive. Such is in simplified terms the
physics of the Higgs mechanism, as this mass-generating process is called.

8.5.2 Breakdown of Discrete Symmetry

Let us begin with the simplest model having a discrete symmetry and con-
taining a single massless real scalar field which plays the role of the Higgs
field. The part of the Lagrangian relevant to the present discussion is

Ls = 1
2 ∂µφ ∂

µφ− V (φ) , (8.72)

with a potential parameterized by two real constants, λ and µ2,

V (φ) =
1

2
µ2 φ2 +

λ

4!
φ4 . (8.73)

The corresponding energy density is given by

Hs = 1
2

[

(∂0φ)2 + (∇φ)2
]

+ V (φ) . (8.74)

The only internal symmetry of the model is its invariance to field reflection

φ(x) → φ′(x) ≡ −φ(x) . (8.75)

The energy minimum of the system is determined at the classical level by the
condition

∂V

∂φ
= φ

(

µ2 +
λ

6
φ2

)

= 0 . (8.76)

When λ < 0 the potential V (φ) has no stable minima for finite φ (see
Fig. 8.4a). We will therefore assume λ ≥ 0. Then, for µ2 > 0 the po-
tential has a unique minimum at φ = 0 (as shown in Fig. 8.4b) and the
symmetry of the vacuum is manifest. More interesting is the case µ2 < 0
when V has minima at the nonzero field values

φ = ±
√

−6µ2/λ (8.77)

(shown in Fig. 8.4c). This is precisely the situation in which V is attractive
at small values of φ but becomes strongly repulsive at large values. The field
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Fig. 8.4a–c. Potential for the scalar field with reflection symmetry, for different
values of the parameters

values given in (77) are independent of x and correspond to the quantum-
mechanical vacuum expectation value of the field operator, denoted by 〈φ〉
or 〈0 | φ | 0〉. Because of the reflection symmetry (75) of the model, whichever
solution is chosen will lead to the same physics; but once the choice is made,
the symmetry of the system is (spontaneously) broken. Let us arbitrarily
select the positive value of φ at minimum V to define the vacuum:

〈φ〉 = v =
√

−6µ2/λ . (8.78)

In order to do any calculations beyond the ground state, it is convenient
to introduce a new field

χ(x) = φ(x) − v , (8.79)

which is designed to have a zero vacuum expectation value. It measures
field oscillations about the uniform background φ = v. In terms of χ, the
Lagrangian density becomes

Ls =
1

2

[

∂µχ∂
µχ− (−2µ2)χ2

]

− λ

4!

(

4v χ3 + χ4
)

− 1

4
µ2v2 . (8.80)

It can now be interpreted in the usual way, with no more concern about the
properties of the vacuum, since the dynamic field vanishes in the vacuum,
〈χ〉 = 0. It simply describes the dynamics of a spin-0 field with real mass
√

−2µ2. Even though it is the same Lagrangian as before, the presence of
the cubic term χ3 gives us no reason to suspect that a symmetry actually lies
in the background.

8.5.3 Breakdown of Abelian Symmetry

We are eventually interested in theories with continuous gauge symmetries.
The simplest model that exhibits such a symmetry is the complex scalar field
theory described by the Lagrangian

Ls = ∂µϕ∂
µϕ∗ − V (ϕ, ϕ∗) ,

V (ϕ, ϕ∗) = µ2 ϕϕ∗ + 1
4 λ (ϕϕ∗)2 , (8.81)
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which is evidently invariant under a global phase transformation with an
arbitrary real constant α .

ϕ 7→ e−iαϕ ,

ϕ∗ 7→ eiαϕ∗ . (8.82)

For the same reason as before, we assume λ > 0. Then, for µ2 positive,
V acquires an absolute minimum at ϕ = 0 and the vacuum has manifestly
the same symmetry as the Lagrangian. But if µ2 is negative, the system has
the lowest energy for

|ϕ|2 = −2µ2/λ .

Thus, there is an infinite number of degenerate minima lying on a circle of
radius

√

−2µ2/λ (see Fig. 8.5) and differing from one another by a relative
phase factor, but all equivalent through the phase transformations (82) and
all leading to the same physics. Any particular choice of 〈ϕ〉 will sponta-
neously break the symmetry; so we may as well let its phase-angle be zero
and select the vacuum such that

〈ϕ〉 =
v√
2

(8.83)

for v =
√

−4µ2/λ. It is significant to note that in this choice only the real
part of ϕ acquires a nonzero vacuum expectation value, fixing the direction
of the symmetry breakdown.

We now define a shifted complex field χ such that

ϕ = 〈ϕ〉 + 1√
2
χ = 1√

2
(v + χ1 + iχ2) . (8.84)

Both real fields χ1 and χ2 have zero vacuum expectation values. They mea-
sure excitations of the fields from the vacuum in the directions radial and
tangential to the circle of degenerate minima. In terms of these fields, we
have for the potential

V = −µ2χ2
1 +

λ

16
(χ2

1 + χ2
2)
[

4vχ1 + χ2
1 + χ2

2

]

+
µ2v2

4
, (8.85)

and for the Lagrangian

Ls =
1

2

[

∂µχ1 ∂
µχ1 − (−2µ2)χ2

1

]

+
1

2
∂µχ2 ∂

µχ2

− λ

16
(χ2

1 + χ2
2) (4vχ1 + χ2

1 + χ2
2) −

1

4
µ2v2 . (8.86)

Evidently, the phase symmetry has been spontaneously broken. The field
χ1, which represents fluctuations in the direction of symmetry breakdown,
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Fig. 8.5. Symmetry-breaking ground state in a potential that exhibits invariance
under continuous symmetry transformations

acquires a mass, just as in the real scalar model. But the field χ2, which mea-
sures deviations in the direction of symmetry conservation, remains massless
– a new feature, absent when it is a discrete symmetry that breaks down. In
geometrical terms, as the vacuum is selected at some point on the circle of
degenerate minima of V , it is an absolute minimum for the potential curve
in the radial direction, and excitations from such a point always require en-
ergy, which implies massive modes. On the other hand, the selected vacuum
has precisely the same potential energy (−µ4/λ) as any other minimum, and
deviations in the tangential direction, in which V is flat and the total energy
constant, describe the zero-frequency motion around the minimum circle.
Such massless and spinless modes that arise from a spontaneous breaking of
a continuous symmetry are called the Nambu–Goldstone bosons in particle
physics. This property is not particular to the present model but is a general
feature of spontaneous breakdown of gauge symmetry.

8.5.4 Breakdown of Non-Abelian Symmetry

Let us turn now to a general non-Abelian gauge symmetry G. Since a complex
representation can always be replaced by a real one by doubling the basis
vectors of the space on which it is defined, we need to consider only real
representations. Thus, we take n real scalar fields, φ1, . . . , φn, to form a
column vector φ which transforms as a (generally reducible) representation
of G:

φ→ φ
′ = U φ , (8.87)

where U is a real, orthogonal n × n constant matrix. In the usual parame-
terization we write it as

U = e−igωjTj , (8.88)

where g and ωj are real constants and Tj for j = 1, . . . , N are the n × n
matrices satisfying the Lie algebra associated with the group. These matrices
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are Hermitian, T †
j = Tj, because U is unitary; as well as imaginary and

antisymmetric, T ∗
j = TT

j = −Tj , because U is also real (an upper index T

denotes a transposed matrix).
The Lagrangian for these fields is taken to be

Ls = 1
2 ∂µφ ∂

µφ− V (φ) ,

V (φ) = 1
2µ

2φ
T
φ+ 1

16 λ
(

φ
T
φ
)2

, (8.89)

where λ > 0. As in previous cases, nothing noteworthy happens when µ2 is
positive; but when µ2 turns negative, V acquires an infinite set of degenerate
nonzero minima at

|φ|2 = −4µ2

λ
. (8.90)

The group symmetry is spontaneously broken when the vacuum is selected,
such that, for example,

〈φ〉 = v , (8.91)

for some real constant n-dimensional vector satisfying |v|2 = −4µ2/λ. Pro-
ceeding as before, we define the shifted field

χ = φ− v , (8.92)

which has a zero vacuum value, 〈χ〉 = 0. In terms of χ the potential becomes

V =
1

4
µ2v2 +

λ

4

(

χTv
)2

+
λ

16

(

χTχ
) [

4
(

χTv
)

+
(

χTχ
) ]

, (8.93)

and the Lagrangian assumes the form

Ls =
1

2

[

∂µχa∂
µχa − 1

2 λ vavb χaχb

]

− λ

16

(

χTχ
) [

4
(

χTv
)

+
(

χTχ
) ]

− 1

4
µ2v2 . (8.94)

The masses of the fields are not apparent from (94) because they reside in
the nondiagonalized quadratic terms which give the squared-mass matrix

(

M2
B

)

ab
= 1

2
λ vavb , for a, b = 1, . . . , n . (8.95)

To find the allowed eigenvalues of M2
B, let it operate on any vector Ti v :

M2
B Ti v = 1

2 λv (vTTiv) = 1
2 λv (vTTiv)

T

= 1
2 λv (vTTT

i v) = −1
2 λv (vTTiv) , (8.96)
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so that

M2
B Ti v = 0 , for i = 1, . . . , N . (8.97)

On the other hand, since the symmetry is broken by setting 〈φ〉 = v,

v 6= Uv ≈ v− igωjTj v ,

and so there must exist at least one Tk such that

Tk v 6= 0 . (8.98)

For each such Tk, the matrix M2
B has a zero-eigenvalue, as required by (97);

this zero-eigenvalue corresponds to a Nambu–Goldstone mode.
Let S be the maximum subgroup of G that survives as a symmetry of the

vacuum after the breakdown of G; let M (M ≤ N) be its dimension. We can
always choose the generators Ti of G such that the first M generators, Tj for
j = 1, . . . ,M , generate S. Then, since the vacuum remains invariant under
subgroup S,

Tj v = 0 , for j = 1, . . . ,M ; (8.99)

but for the remaining generators,

Tk v 6= 0 , for k = M + 1, . . . , N , (8.100)

and (97) tells us that M2
B admits N −M zero-eigenvalues. Since the N −M

vectors Tkv, for k = M + 1, . . . , N , are evidently linearly independent, there
must be N −M massless Nambu–Goldstone bosons in the theory, one for
each symmetry-breaking generator. The other (n − N + M) bosons in the
system have, in general, nonvanishing masses.

Example 8.1 Orthogonal Group

The orthogonal group G = O(n) has N = 1
2
n(n− 1) generators. We take

n real scalar fields to form the n-dimensional vector representation φ, and
let their potential V acquire a minimum for |φ|2 = v2. Among the infinite
number of possible minima, a particular vector v of squared modulus v2 is
chosen to define the vacuum. The vacuum symmetry consists of all rotations
that leave v invariant. These are the rotations that act on a space with
one less dimension, and together form an orthogonal group O(n − 1) with
M = 1

2(n− 1)(n− 2) independent generators. In particular, if we choose the
axes in the representation space such that the vacuum vector v points along
the nth axis, so that va = vδan , the elements of O(n− 1) do not mix the nth
component of v with the others. If Lij denote the generators of O(n),

(Lij)ab = −i(δia δjb − δib δja) , for i, j, a, b = 1, . . . , n ,
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the vacuum vector v satisfies the conditions

(Lijv)a
= 0 for i, j = 1, . . . , n− 1 ;

(Lknv)a = −iv δka for k = 1, . . . , n− 1 .

It follows that Lij with i, j = 1, . . . , n − 1 generate the vacuum symmetry
group, while Lkn for k = 1, . . . , n− 1 lead to nontrivial vectors when applied
on v. There are, as expected, N −M = n − 1 massless Nambu–Goldstone
bosons; and since we started out with n fields in all, there remains just one
Higgs boson with mass M2

H = λ v2/2, given by the single element of M2
B.

Up to now we have parameterized field deviations from the vacuum in the
obvious way, that is, as in (92). Another possibility which might come handy
can be illustrated by the present example. Let us start with φ = v+χ as in
(92), with va = v δan for a = 1, . . . , n, and construct the n× n matrix

U(ω) = exp

(

−i

n−1
∑

k=1

ωk Lkn

)

.

Under this rotation, φ transforms into

φ′ = U φ = U (v+χ) .

Assuming that both the fluctuations χa and the transformation parameters
ωi are infinitesimal, we obtain up to linear terms

φ′
a ≈ va + χa − i

∑

k

ωk(Lkn)ab vb

≈ (v + χn) δan + (χa − v ωa)(1 − δan) , a = 1, . . . , n.

Thus, if we choose ωa = χa/v, the transformed field φ′ will align with the
nth axis, in the same direction as v, so that

φ′
a ≈ (v + χn) δan .

Inversely, a general vector φ may be obtained from the vector with compo-
nents (v + χn) δan by the rotation U(−ω). To summarize, an alternative to
(92) is the parameterization

φ = exp

(

i

v

n−1
∑

k=1

ξkLkn

)

φ‖ , (8.101)

where φ‖ is an n-component vector with a single nonvanishing component,
(φ‖)a = (v + η) δan. The two parameterizations are equivalent to first order,
η ≈ χn and ξk ≈ χk for k = 1, . . . , n− 1.
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8.6 Spontaneous Breaking of Local Symmetries

The Nambu–Goldstone bosons have the amazing property that, when it is
a local gauge symmetry that is spontaneously broken, they disappear and
simultaneously the normally massless gauge fields become massive, giving
the associated long-range gauge forces a finite range. This shielding effect
is akin to the Meissner effect in superconductivity, which makes an external
magnetic field attenuate beyond a surface layer inside a superconductor.

8.6.1 Abelian Symmetry

We first study the simple Abelian model of scalar electrodynamics; when
spontaneously broken, it is called the Higgs model . Even though it does not
provide practically useful results, it will illustrate many of the ideas to be
found in a more general model. The model is defined by

L = DµϕD
µϕ∗ − µ2ϕϕ∗ − 1

4
λ (ϕϕ∗)2 − 1

4
FµνF

µν , (8.102)

where ϕ is a complex scalar field, with covariant derivatives

Dµϕ = (∂µ + iqAµ)ϕ ,

Dµϕ
∗ = (∂µ − iqAµ)ϕ∗ , (8.103)

and Fµν is the gauge-invariant field strength associated with the gauge field
Aµ. This Lagrangian is, of course, the version of (81) made invariant under
the U(1) local gauge transformations

Aµ → A′
µ = Aµ + ∂µω , (8.104)

ϕ→ ϕ′ = e−iqω ϕ . (8.105)

When µ2 is positive the Lagrangian (102) just describes a scalar particle of
mass µ and charge q interacting with an electromagnetic field. We are rather
interested in the case of negative µ2 when the potential develops minima
at the field values |ϕ|2 = −2µ2/λ. Then the symmetry may be hidden by
selecting the vacuum so that the field acquires the vacuum expectation value

〈ϕ〉 = 1√
2
v , (8.106)

for the real number v =
√

−4µ2/λ . Now, define the real fields χ1 and χ2

through

ϕ(x) = 1√
2
(v + χ1 + iχ2) . (8.107)

Then the covariant derivative of the field becomes

Dµϕ =
1√
2

[

∂µχ1 + iqv (Aµ +
1

qv
∂µχ2) + iqAµ (χ1 + iχ2)

]

, (8.108)
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leading to the expression for the kinetic term

K = DµϕD
µϕ∗

=
1

2
(∂µχ1 − qAµχ2)

2
+

1

2
(∂µχ2 + qvAµ + qAµχ1)

2
. (8.109)

As in the complex scalar model with global symmetry, here χ1 acquires a
mass too, but a clear interpretation of χ2 and Aµ is difficult to have because
they are coupled together in the second order. What is significant is that this
coupling comes as part of the expression

1

2
(qv)2

(

Aµ +
1

qv
∂µχ2

)(

Aµ +
1

qv
∂µχ2

)

, (8.110)

which could be regarded as a mass term for a redefined vector field

A′
µ = Aµ +

1

qv
∂µχ2 . (8.111)

This field redefinition appears as a gauge transformation (104) of Aµ with
the local transformation parameter ω = χ2/qv; it tells us that χ2 has no
real physical significance and might be eliminated by an appropriate gauge
transformation. With this in mind, let us rewrite the gauge transformation
(105) for the real fields χi :

χ1 → χ′
1 = −v + (cos qω)(v + χ1) + (sin qω)χ2 ,

χ2 → χ′
2 = (cos qω)χ2 − (sin qω)(v + χ1) . (8.112)

For an infinitesimal ω this gives

χ′
1 ≈ χ1 + qω χ2 ,

χ′
2 ≈ χ2 − qω χ1 − qω v . (8.113)

We see that the field χ2 transforms with an inhomogeneous term, just like
Aµ, so that separately neither can have a direct physical meaning. In fact
the gauge invariance of the theory allows us to make a gauge transformation
that completely removes χ2. It suffices to choose as parameter

ω(x) =
1

q
tan−1

[

χ2

v + χ1

]

. (8.114)

In this gauge, only two fields survive: χ′
1, which will be renamed H , and

A′
µ = Aµ + ∂µω ≈ Aµ +

1

qv
∂µχ2 + higher-order terms , (8.115)
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which will be simply called Aµ. We then have, for the potential,

V = −µ2H2 +
1

16
λH2 (4vH +H2) +

1

4
µ2v2 , (8.116)

and, for the Lagrangian,

L =
1

2
[∂µH ∂µH + 2µ2H2 ] − 1

4
FµνF

µν +
1

2
(qv)2 AµA

µ

+
1

2
q2AµA

µH(H + 2v) − 1

16
λH3(H + 4v) − 1

4
µ2v2 . (8.117)

This result can now be naturally interpreted as the Lagrangian for a
neutral scalar particle of mass

√

−2µ2 and a massive vector particle with
mass MA = qv, conveniently decoupled from each other in the second order.
The would-be Goldstone boson is completely gone; it has been gauged away,
absorbed as the newly formed longitudinal polarization state of the vector
field, as indicated by (115). Thus, two massless particles have been disposed
of: the vector meson has gained mass and the Goldstone boson has been
eliminated. Instead of a massless gauge boson with its two transverse modes
and a complex scalar field composed of two real components, we have, after
the symmetry breaking, a single real spin-0 field H and a massive spin-1
meson with three spin states (two transverse and one longitudinal). The
number of degrees of freedom has not changed; it remains four.

In the gauge specified by (114) all fields that survive the symmetry break-
down are physical fields; fictitious particles, whose Green’s functions would
have singularities that violate unitarity, are absent. But the Lagrangian
(117) contains a massive vector field, whose propagator for large momentum
grows as 1/M2

A rather than as k2 characteristic of massless vector fields and,
therefore, does not lead to an obviously renormalizable theory. This gauge,
manifestly unitary but not manifestly renormalizable, is called the unitary

(or U) gauge. A surprising result, obtained by G. ’t Hooft, is that the renor-
malizability of the theory, though not manifest in (117), has in fact been
preserved in the spontaneous symmetry breaking; it is not apparent simply
because of the particular gauge being used. ’t Hooft’s proof of renormalizabil-
ity of spontaneously broken gauge theories relies on the discovery that it is
useful to adopt a class of more general gauges, called Rξ, which even though
not manifestly unitary, are explicitly renormalizable; that is, the ultraviolet
divergences that arise will behave no worse than those occurring in QED.

The Rξ-gauges may be enforced by adding to the Lagrangian (117) the
gauge-fixing term

LGF = − 1

2ξ
(∂µA

µ − f)2

= − 1

2ξ
(∂µA

µ)2 +
1

ξ
(∂µA

µ) f − 1

2ξ
f2 , (8.118)
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where ξ is a positive real constant that defines the gauge, while f will be
chosen so as to cancel the awkward quadratic coupling of Aµ and χ2 found
in (109). This is done by requiring

ξ−1(∂µA
µ) f + qv Aµ∂µχ2 = 0 ,

which is satisfied up to a total derivative, provided that

f = ξ qv χ2 . (8.119)

Together with the gauge-fixing term, the Lagrangian becomes in this
gauge

L =
1

2

[

(∂µχ1)
2 + (∂µχ2)

2 + (qv)2A2
µ + 2qv Aµ∂µχ2

+ 2q Aµ(χ1∂µχ2 − χ2∂µχ1) + q2 A2
µ(2vχ1 + χ2

1 + χ2
2)
]

− 1

4
F 2

µν − 1

2ξ
(∂µA

µ)2 − 1

2ξ
(ξqv)2 χ2

2

+ µ2χ2 − λ

16
(χ2

1 + χ2
2)(4vχ1 + χ2

1 + χ2
2) −

µ2v2

4

=
1

2

[

(∂µχ1)
2 + 2µ2χ2

1

]

+
1

2

[

(∂µχ2)
2 − ξ(qv)2χ2

1

]

− 1

4
F 2

µν − 1

2ξ
(∂µA

µ)2 +
1

2
(qv)2A2

µ + higher-order terms. (8.120)

Thus, in a general Rξ-gauge three fields are involved, decoupled from each
other in the second order: the vector field of mass MA = qv, the Higgs boson
of mass MH =

√

−2µ2, and the former Goldstone boson now with mass√
ξ MA. The dependence of the latter on the gauge parameter reveals the

inherently nonphysical character of the Goldstone field.
The propagators of these fields can now be found from their respective

quadratic terms in (120). Thus, the Goldstone mode has the propagator

∆(p,
√

ξMA) = [ p2 − ξM2
A]−1 , (8.121)

and the Higgs boson has the propagator

∆(p,MH) = [ p2 −M2
H + iε]−1 . (8.122)

To find the propagator for the vector field, we consider the quadratic terms
in Aµ in the Lagrangian which are, up to total derivatives,

− 1

4
F 2

µν − 1

2ξ
(∂µA

µ)2 +
1

2
(qv)2 A2

µ

=
1

2
Aµ [gµν(∂2 + q2v2) − (1 − ξ−1) ∂µ∂ν ]Aν , (8.123)
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from which the inverse propagator can be immediately read off:

[Dµν(p)]−1 = gµν (−p2 +M2
A) + (1 − ξ−1) pµpν , (8.124)

or in terms of projection operators,

[Dµν(p)]−1 = −(p2 −M2
A)

(

gµν − pµpν

p2

)

− ξ−1(p2 − ξM2
A)
pµpν

p2
.

The propagator itself is then

Dµν(p) = −(p2 −M2
A + iε)−1

(

gµν − pµpν

p2

)

− ξ(p2 − ξM2
A)−1 pµpν

p2
,

which reduces to

Dµν(p) =
−gµν + (1 − ξ)pµpν/(p

2 − ξ M2
A)

p2 −M2
A + iε

. (8.125)

Note that the poles at p2 = ξM2
A in (121) and (125) are unphysical and need

not be defined with an iε term. They will be canceled out in any physical
transition amplitude (as shown by ’t Hooft).

When MA = 0, one recovers the propagator for the photon or gluon,

Dµν(p) =
−gµν + (1 − ξ)pµpν/p

2

p2 + iε
. (8.126)

Familiar gauges correspond to special values of ξ. With ξ = 1, we recover
the Feynman gauge often used in QED,

Dµν(p) =
−gµν

p2 −M2
A + iε

, (8.127)

while for ξ = 0, it is the Landau gauge, in which the propagator depends
only on the transverse projection operator,

Dµν(p) =
−gµν + pµpν/p

2

p2 −M2
A + iε

. (8.128)

We can see that for any finite value of ξ, the propagator at large momentum
behaves as 1/p2, just as in the massless case, and the corresponding gauge
is manifestly renormalizable. But as ξ → ∞, (125) tends to the ordinary
propagator for a massive vector field

Dµν(p) =
−gµν + pµpν/M

2
A

p2 −M2
A + iε

, (8.129)

while the propagator for the erstwhile Nambu–Goldstone mode in (121) tends
to zero, suggesting that this field will drop out of the system. The gauge
ξ → ∞ coincides with the unitary gauge.
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8.6.2 Non-Abelian Symmetry

We now generalize the above considerations to local gauge symmetry by
introducing the general Yang–Mills fields to make the model of Sect. 8.5.4
invariant under a local gauge group G. We consider a real n-dimensional
representation of G spanned by n-component scalar fields φ and in which
the transformations are generated by N imaginary and antisymmetric n× n
matrices Ti for i = 1, . . . , N . To each generator corresponds a vector gauge
field, Aiµ, so as to satisfy G gauge invariance (by which we mean gauge
invariance under the symmetry group G ). Thus, we consider the Lagrangian

L =
1

2
(Dµφ)TDµ

φ− V (φ) − 1

4
FiµνF

µν
i , (8.130)

with the G-covariant derivative

Dµφ = (∂µ + igAµ)φ = (∂µ + igAjµTj)φ ,

and the G-covariant field tensors associated with the gauge fields

F µν
i = ∂µAν

i − ∂νAµ
i − g fijk A

µ
jA

ν
k .

An explicit form of V in terms of φ is not essential, all we need is that
it respects the G symmetry and develops degenerate minima at nonzero con-
stant field values |φ|2 = v2. Then, the gauge invariance is spontaneously
broken when the system arbitrarily selects for itself a vacuum state such that
〈φ〉 is some constant vector v, which we call the vacuum vector, satisfying the
condition that v2 minimizes V . Now we suppose that the symmetry breaking
leaves the vacuum invariant under a subgroup S of G and that the genera-
tors Ti of G are chosen so that Tj , for j = 1, . . . ,M and M < N , generate
S . Since by assumption v is invariant under S but noninvariant under its
complement in G, we have

Tjv = 0 , j = 1, . . . ,M ; (8.131)

Tkv 6= 0 , k = M + 1, . . . , N . (8.132)

Just as the algebra g of G is defined by all the linear combinations
∑N

i=1 ciTi,
so too is the algebra gS of the subgroup S defined by all the combinations
∑M

j=1 cjTj . Subalgebra gS has dimension M ; it annihilates the vacuum. The
orthogonal complement to gS in g has dimension N−M ; its elements applied
on the vacuum vector yield N − M -dimensional vectors,

∑N
k=M+1 ckTkv,

which span the space of the Nambu–Goldstone modes.
Taking advantage of the gauge invariance of (130), we may perform a

gauge transformation on all the fields without changing the underlying physics.
The particular gauge transformation U is so chosen to cancel the quadratic
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coupling between the gauge fields and the scalar fields, which is equivalent
to requiring

(

(Uφ)T(x)Tiv
)

= 0 for all i and all x. (8.133)

That such a (unitary) gauge always exists was proved by Weinberg. Given
this general result, let us define an n-component field H(x) orthogonal to
all Tkv for k = M + 1, . . . , N . As Ti are antisymmetric matrices (as in
Sect. 8.5.4), we also have (vT Tiv) = 0, and therefore,

(

(v+H)T Tkv
)

= 0 , k = M + 1, . . . , N , (8.134)

in addition to the identity

(

(v+H)T Tjv
)

= 0 , j = 1, . . . ,M , (8.135)

which holds because of the invariance of the vacuum vector under S. Taken
together, these relations yield

(

(v+H)T Tiv
)

= 0 , i = 1, . . . , N . (8.136)

As we will now see, it proves useful to adopt a parameterization of fields
similar in form to (101):

φ = exp

(

i

v

N
∑

k=M+1

ξkTk

)

(v+H) . (8.137)

In this parameterization, the independent fields are the N − M would-be
Nambu–Goldstone modes ξk, with k = M + 1, . . . , N , and the n − N + M
independent components ofH representing the Higgs bosons. It now becomes
clear that the transformation U needed to satisfy (133) or (136) is

U = exp

(

− i

v

N
∑

k=M+1

ξkTk

)

. (8.138)

Since the Lagrangian (130) is invariant under the local group G, it remains
unchanged with the fields written in the new gauge

φ
′ = Uφ = v+H ,

A′
µ = UAµU

† +
i

g
(∂µU)U † ,

F
′
µν = UFµνU

† . (8.139)
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Thus, in this U-gauge, the fields ξk have completely vanished, and (130)
involves only H and A′

jµ, which we will now simply write Ajµ,

L =
1

2
(Dµ(v+H))

T
Dµ(v+H) − V (v+H) − 1

2
∂µAiν (∂µAν

i − ∂νAµ
i ) .

(8.140)

The ‘kinetic’ part can be expanded as

(Dµ(v+H))
T
D

µ(v+H)

=
(

∂µH
T + ig(v+H)TAT

µ

)

(∂µH+ igAµ(v+H))

= ∂µH
T ∂µH+ 2ig ∂µH

TAµ(v+H) + g2(v+H)TAµA
µ (v+H) .

(8.141)

We observe that the quadratic mixing term ofAµ andH can now be disposed
of, as expected from (136),

2ig ∂µH
T
A

µ
v = 2ig Aiµ ∂

µH
TTiv = 0 . (8.142)

The Lagrangian then reduces to

L =
1

2

(

∂µH
T ∂µH−HTM2

BH
)

− 1

2
∂µAiν (∂µAν

i − ∂νAµ
i ) +

1

2
g2vTAµA

µ v

+ i g ∂µH
TAµH+ g2vTAµA

µH+
1

2
g2HTAµA

µH+ . . . , (8.143)

where . . . indicates the cubic and quartic self-coupling terms in H, whose
details depend on the assumed potential V . The surviving real scalar Higgs
fields are massive, with squared masses determined by the matrix

(

M2
B

)

ab
=

∂2V

∂φa ∂φb

∣

∣

∣

∣

φ=v

. (8.144)

The squared-mass matrix for the vector mesons

g2(vTT`Tk v) (8.145)

is real, symmetric, and positive-definite, and is nonvanishing for `, k = M+1,
. . . , N . Of all the gauge fields, only those associated with the symmetry-
breaking part of G, that is, Aµ

k with k = M + 1, . . . , N , acquire masses and
longitudinal components, as shown by the presence of the inhomogeneous
terms in the variations under the transformation (139):

δAkµ =
1

gv
∂µξk − 1

v
fkm`Amµξ` , (8.146)
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whereas the others, Aµ
j with j = 1, . . . ,M , associated with the surviving

symmetry, remain massless, transversely polarized, and transform homoge-
neously under (139). The number of independent degrees of freedom remains
the same before and after the symmetry breaking. The original n real scalar
fields and N massless gauge mesons, producing altogether n + 2N degrees
of freedom, are replaced after the symmetry breaking by n −N + M Higgs
bosons, M massless vector fields, and N−M massive vector fields for a total
of n−N +M + 2M + 3(N −M) = n+ 2N degrees of freedom.

As we have discussed above, a unitary gauge leads to a formalism that is
simple to interpret, but has the disadvantage of not being manifestly renor-
malizable. It is more useful for practical calculations to adopt a manifestly
renormalizable gauge so that the powerful techniques developed for renormal-
izable theories can be applied. This can be accomplished by a generalization
of the gauge-fixing Lagrangian (118),

LGF = − 1

2ξ
(∂µA

µ
i − igξφTTiv)

2 , (8.147)

designed so that the quadratic mixing terms between Aiµ and ∂µφ found
here and in the Lagrangian (130) exactly cancel out.

We have limited ourselves in this chapter to a discussion of the mass gen-
eration of gauge bosons. When matter fields are introduced, they may not be
allowed by gauge invariance to have explicit masses in the basic Lagrangian.
It is possible however to induce their masses by coupling matter fields to the
Higgs fields in a gauge-invariant way. We will study how this mechanism can
make quarks and leptons massive in the context of the standard model of the
electroweak interaction.

Problems

8.1 Equations of motion. Show that the equations of motion corre-
sponding to the Lagrangian (42) are

(iγµDµ −m)ψ = 0 ,

DµFµν = g ψγνTjψ .

8.2 Group multiplication in gauge groups. Show that, for any element
h of the gauge group, the transformation rule for the gauge field

h : Aµ → A′
µ = UAµU

† +
i

g
(∂µU)U †

satisfies the group multiplication law, that is, if h : Aµ → A′
µ and h′ : A′

µ →
A′′

µ then h′′ : Aµ → A′′
µ, where h′′ = h′h.

8.3 The linear σ–π model. Consider a model for a real field σ, trans-
forming as an isosinglet and three real scalar fields φi, forming an isotriplet.
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Call the conjugate momenta of fields πi
µ = ∂µφi, π

4
µ = ∂µσ and their time

components πi
0 = πi and π4

0 = π4. The fields are quantum operators satisfy-
ing the canonical commutation relations at equal times. The Lagrangian of
the model is given by

Ls =
1

2
(∂µφi∂

µφi + ∂µσ∂
µσ) − V (φ2 + σ2) . (1)

(a) Show that the model is invariant under the following two global transfor-
mations of their internal degrees of freedom (σ → σ + δiσ ,φ→ φ+ δiφ):
– isospin rotation:

δiσ = 0 ; δiφj = εijkωiφk , (no sum over i). (2)

– chiral transformation:

δiσ = ωiφi ; δiφj = −δijωiσ , (no sum over i). (3)

(b) Show that the associated conserved isospin and axial currents are Viµ =
εijkφjπ

k
µ , and Aiµ = πi

µσ − π4
µφi ; and that the corresponding conserved

charges, Qi and Q5
i satisfy

[Qi, Qj ] = iεijkQk ,

[Qi, Q
5
j ] = iεijkQ

5
k ,

[Q5
i , Q

5
j ] = iεijkQk .

Show that Q+
i ≡ 1

2
(Qi + Q5

i ) and Q−
i ≡ 1

2
(Qi − Q5

i ) form two independent
commuting SU(2) algebras, so that the algebra of the model is a semisimple
algebra, SU(2) × SU(2).
(c) Assuming that V = 1

2µ
2(σ2+φ2)+ 1

4λ (σ2+φ2)2, where λ > 0 and µ2 < 0.

The potential V has minima for fields satisfying σ2 + φ2 = −µ2/λ. Select
the vacuum such that 〈φi〉 = 0 , and 〈σ〉 = v =

√

−µ2/λ , thus provoking
a symmetry breakdown. Now define σ′ = σ − v. Calculate the masses of φi

and σ′. Calculate the commutation relations of Qi and Q5
i with σ′ and φi,

and show that Q5
i generate a symmetry that is broken in the vacuum.

(d) To Ls, add the following Lagrangian for an isodoublet of fermions, inter-
acting with σ and φi,

LF = ψ(iγ · ∂ −m0)ψ − g ψ(σ + iτjφjγ5)ψ . (4)

Together Ls and LF define the Gell-Mann–Levy model. The isospin and
chiral transformations (2) and (3) are supplemented by the following for ψ:

δiψ = 1
2
iωiτiψ , (no sum over i).

δiψ = 1
2
iωiτiγ5ψ , (no sum over i).

Show that LF is invariant to isospin rotations for m arbitrary, but is invariant
to chiral transformation only for m0 = 0. Assume now m0 = 0. Consider the
full system described by Ls + LF, and show that when there is spontaneous
symmetry breaking by (8), the fermion acquires a mass, m = gv. Express
the parameters µ2, λ, and v in terms of g, m, and mσ′ .
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