
3 Fermion Fields

In the previous chapter, we have seen that the nonrelativistic equation of mo-
tion of a free particle can be generalized in a natural way to the relativistic
regime by making homogeneous its dependence on space and time. There are
two possibilities. The first, involving second-order derivatives and called the
Klein–Gordon equation, governs the evolution of fields of integral spins which
are associated with operators that obey commutation relations. The second,
containing only first-order derivatives and discovered by P. A. M. Dirac in
1928 in his search for a relativistic formalism admitting a non-negative prob-
ability density, describes the dynamics of fields having spins 1/2 . These fields
must then represent particles, such as the electron, the proton, or the quarks,
that constitute the bulk of visible matter in the universe. They are the sub-
ject of the present chapter.

3.1 The Dirac Equation

The equation in question is of the form

(iγµ∂µ −m)ψ(x) = 0 , (3.1)

where the parameter m, of the dimension of mass, can be chosen to be real
(by redefining if necessary the phase of the complex function ψ), but the
four quantities γµ = (γ0, γ1 , γ2 , γ3) remain in general complex and behave,
by assumption, as the components of some Lorentz vector. In particular,
γµ = gµνγ

ν . Application of the operator (iγµ∂µ +m) on this equation gives

−(γµγν ∂µ∂ν +m2)ψ = −
[

1
2 (γµγν + γνγµ) ∂µ∂ν +m2

]

ψ = 0 . (3.2)

Comparing the operator on the left-hand side of this equation with the
energy-momentum relation for a free particle of mass m,

pµpµ −m2 = 0 ,

considered as an operator by the correspondence pµ → i∂µ, identifies m in
(1) as the particle mass and leads to the condition

γµγν + γνγµ ≡ {γµ, γν} = 2gµν 1 . (3.3)
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The notation {a, b} = ab+ ba stands for an anticommutator , and 1 for a unit
matrix of a certain order since γµ are not necessarily simple numbers. From
(3) we see that, first γ2

0 = 1 and γ2
i = −1 and hence the eigenvalues of γ0 are

±1 and those of γi are ±√−1, and second, γ0 = γiγ0γi and γi = −γ0γiγ0 for
i = 1, 2, 3 . Taking the traces of the last two identities, one gets

Trγ0 = Tr (γiγ0γi) = −Trγ0 ,

Trγi = −Tr (γ0γiγ0) = −Trγi ,

where the cyclic property of trace has been used: Tr(abc) = Tr(cab) . So
Trγµ = 0 . Since the trace of a matrix is equal to the sum of its eigenvalues,
γ0 must have as many eigenvalues equal to +1 as those equal to −1, and
similarly for γi . It follows that the order of the matrix γµ must be an even
number. The smallest possible order, N = 2, is not admissible because it has
just enough room for the three Pauli matrices and the unit matrix. The next
smallest order for which the γµ matrices can be realized according to (3) is
N = 4, which can accommodate 16 independent matrices, and it is this case
that interests us. In this representation (called the spinor representation),
ψ is a column vector with four components (called the Dirac spinor) and
the γµ are 4 × 4 complex matrices. The mass m will be assumed to be
nonvanishing for now. The special case m = 0, for which the representation
N = 2 is perfectly appropriate, will be reconsidered at the end of this chapter.
Let us note in passing that the equality of the dimensions of the spinor
representation and of space-time is a pure coincidence that occurs only in
four-dimensional space-time.

Let us rewrite (1) in the form

iγ0 ∂

∂t
ψ = (−iγ · ∇+m)ψ .

Multiplying both sides by γ0 yields a relativistic version of the Schrödinger
equation for the system

i
∂

∂t
ψ = (−iγ0γ · ∇+mγ0)ψ . (3.4)

The operator on the right-hand side may be identified with the Hamiltonian
of the Dirac particle

Ĥ = (−iγ0γ · ∇+mγ0) , (3.5)

the Hermitian conjugate of which is

Ĥ† = (−i∇ · γ†γ0† +mγ0†) . (3.6)

Being an observable, Ĥ must be Hermitian, Ĥ = Ĥ†, which implies

γ†0 = γ0 , γ†i = γ0γiγ0 = −γi ,
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or more concisely

γ†µ = γ0γµγ0 . (3.7)

The basic properties of the γµ given in (3) and (7) should suffice to define
γµ . Nevertheless, it is sometimes useful to have an explicit matrix repre-
sentation. In the most popular representation (which therefore is called the
standard representation or the Dirac–Pauli representation) γ0 is diagonal:

γ0 =

(

1 0
0 −1

)

, γi =

(

0 σi

−σi 0

)

. (3.8)

Here 1 is the 2× 2 unit matrix and σi the usual 2× 2 Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (3.9)

Products of the form γµAµ, which occur frequently in calculations involv-
ing the Dirac particles, deserve a distinctive symbol: /A ≡ γµAµ; for example,

/∂ = γµ∂µ = γ0 ∂

∂t
+ γ · ∇ .

With this notation the Dirac equation assumes the form

(i /∂ −m)ψ(x) = 0 . (3.10)

The Hermitian conjugation of this equation followed by an application of rule
(7) yields

−(i ∂µψ
†γ0γµγ0 +mψ†) = 0 ,

which reduces after multiplication from the right by γ0 to a simpler form

ψ(i
←−
/∂ +m) = 0 . (3.11)

Here ψ
←−
/∂ ≡ ∂µψγ

µ, and ψ ≡ ψ†γ0 is a row vector with four components
(called the Hermitian adjoint spinor). If ψ1, . . . , ψ4 are the components of
the column vector ψ, the adjoint spinor ψ is given in the representation (8) of
the γµ by the row vector (ψ∗

1 , ψ
∗
2 ,−ψ∗

3 ,−ψ∗
4) , with ψ∗

a standing for complex
conjugates of ψa.

Let us finally note that in the Dirac equation, just as in the Schrödinger
equation, the time evolution is determined by a first-order time derivative.
In both cases, if the wave function is known at time t = 0, it is also known at
any later time t > 0 . In contrast, to solve an equation of second-order time
derivative, such as the Klein–Gordon equation, one needs to know both the
wave function and its time derivative at the initial point.
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3.2 Lorentz Symmetry

In this section, three important results will be derived from the Lorentz
symmetry of the theory:
• the covariance of the Dirac equation, without which the theory would not

be viable;
• the spin of the Dirac field;
• the bilinear covariants in ψ, a result essential to model building.

3.2.1 Covariance of the Dirac Equation

To say that the Dirac equation is covariant means that first, if an observer
O provided with the coordinates x describes a field by ψ(x) as a solution
of (10), then another Lorentz observer O′ describes the same physical field
by ψ′(x′) that satisfies an equation of the same form written in coordinates
x′ of O′, and second, that there is a well-defined relation between ψ(x) and
ψ′(x′) .

A Lorentz transformation is defined by the real parameters aµ
ν :

xµ → x′µ = aµ
ν x

ν ,

aµ
ρ gµν a

ν
σ = gρσ . (3.12)

Since the Dirac equation and the Lorentz transformation are both linear
relations, ψ(x) and ψ′(x′) must also be connected by a linear relation, that is,
each component ψ′

a(x′) (a = 1, 2, 3, 4) can be written as a linear combination
of the components ψb(x) :

ψ′
a(x′) = Sab(a)ψb(x) , (3.13)

[cf. the simpler transformation law for vector fields: A′µ(x′) = aµ
ν A

ν(x) ].
The 4× 4 matrix S, which depends on the parameters aµ

ν , is determined by
requiring ψ′(x′) to be a solution to

(iγµ∂′µ −m)ψ′(x′) = 0 . (3.14)

Multiplying (10) from the left by S, considered as a linear operator, and
inserting S−1S = 1, one obtains

(iSγµS−1∂µ −m)ψ′(x′) = 0 , (3.15)

which exactly coincides with (14) provided that SγµS−1∂µ = γµ∂′µ . Since
∂µ = aν

µ∂
′
ν , this condition means

S−1(a)γµS(a) = aµ
νγ

ν . (3.16)

This is precisely what is meant when we say that γµ behaves as a Lorentz
vector.
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The relation (16) holds for any Lorentz transformation parameterized by
aµ

ν . Now we use it to determine S(a) for a proper Lorentz transformation.
In this case it suffices to consider an infinitesimal deviation from the identity

aµ
ν = δµ

ν + εµν , where εµν = −ενµ . (3.17)

To first order in εµν , S(a) must have the general form

S(a) ≈ 1− i

4
εµνσµν , (3.18)

where σµν are 4 × 4 matrices antisymmetric in their Lorentz indices, σµν =
−σνµ, and the numerical factor−i/4 has been introduced by convention. The
condition (16) then becomes to first order in εµν ,

ενµγ
µ = − i

4
εκλ(γνσκλ − σκλγ

ν ) ,

which reduces to

2i(δν
κγλ − δν

λγκ) = [γν , σκλ] .

As solution to this equation, one finds with the help of (3)

σµν =
i

2
[γµ, γν ] . (3.19)

Its Hermitian conjugate is

σ†
µν = γ0σµνγ0 , (3.20)

or explicitly,

σ†
ij = σij , σ†

0i = −σ0i , (3.21)

where the following identities have been used: [γ0, σij] = 0 ; {γ0, σ0i} = 0 .
The six independent matrices σµν are σ0j = iγ0γj and σij = iγiγj for i 6= j .
Accordingly, we introduce the useful notations αi and Σ i, which are given in
the standard representation by

σ0j ≡ iαj = i

(

0 σj

σj 0

)

,

σij ≡ εijk Σk = εijk

(

σk 0
0 σk

)

. (3.22)

An important property of S follows from (20), namely,

S† = γ0 S
−1 γ0 , (3.23)
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which also shows that in general S is not unitary. The Lorentz transforms of
the Hermitian conjugate spinor and of the adjoint spinor are

ψ′(x′)† = ψ†(x)S† ,

ψ
′
(x′)† = ψ†(x)S†γ0 = ψ(x)S−1 . (3.24)

They show that bilinear products of the form ψΓψ in general transform more
simply than ψ†Γψ . As S(a) will play a central role in what immediately
follows, let us consider a few examples.

Example 3.1 Rotation (ẑ, δθ)
An infinitesimal rotation about the z axis through an angle δθ is defined
by the parameter ε12 = −δθ, and the corresponding rotation matrix for the
spinor is

SR(ẑ, δθ) ≈ 1− i

4
εij σ

ij = 1 +
i

2
δθ σ12 . (3.25)

More generally, for the finite rotation through an angle θ about an arbitrary
axis n̂, the rotation matrix for the spinor is obtained by replicating (25):

SR(n̂, θ) = exp

(

i

2
θ n̂ ·Σ

)

= cos
θ

2
+ i n̂ ·Σ sin

θ

2
. (3.26)

To obtain the second line, the exponential has first been expanded in a series
in powers of n̂·Σ, then even and odd powers have been summed up separately
using (n̂ · Σ)2 = (n̂)2 = 1 . Hermiticity of σij (or Σ i) then implies the

unitarity of S in this case: S†
R = S−1

R .

Example 3.2 Lorentz Boost
An infinitesimal Lorentz boost in the x direction is defined by the parameter
ε01 = −δω, and the corresponding transformation matrix for the spinor is

SL(δω) = 1− 1

2
δω α1 .

For an arbitrary finite boost ωn̂ the matrix reads

SL(ωn̂) = exp
(

−1
2 ωn̂ ·α

)

= cosh
ω

2
− n̂ ·α sinh

ω

2
.

To obtain the second line, it is useful to note (n̂ · α)2 = (n̂)2 = 1. As the

matrices αj = −iσ0j are Hermitian, SL is also Hermitian, S†
L = SL , rather

than unitary.
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3.2.2 Spin of the Dirac Field

Just as for a vector field (see Chap. 2), we proceed first by determining the
total angular momentum of the spinor field through the examination of its
property (13),

ψ′(x′) = S(a)ψ(x)

or

ψ′(x) = S(a)ψ(a−1x) . (3.27)

To the first order of an infinitesimal transformation, aµ
ν ≈ δµ

ν + εµν , and
the transformed field is

ψ′(x) =
(

1− i
4
εµνσµν

)

ψ(xρ − ερσx
σ)

=
(

1− i
4
εµνσµν

) [

ψ(x)− i
2
εµνLµν ψ(x)

]

= ψ(x) − i
2
εµν

(

Lµν + 1
2
σµν

)

ψ(x) ,

which implies the field variation

δ0ψ(x) = − i

2
εµνJµν ψ(x) . (3.28)

Let us write for once this relation with spinor labels explicitly shown:

δ0ψa(x) = − i

2
εµν (Jµν)ab ψb(x) . (3.29)

Here Jµν are the generators for infinitesimal Lorentz transformations,

(Jµν)ab = Lµνδab + 1
2

(σµν)ab , (3.30)

where σµν , defined by (19), corresponds to the intrinsic part of the transfor-
mation, and Lµν , defined in the previous chapter, to the orbital contribution,

Lµν = i(xµ∂ν − xν∂µ) .

When the transformation being applied is a pure rotation, the corresponding
generators are of course simply the angular momentum components

Jk = 1
2 ε

ijk
(

Lij + 1
2 σij

)

≡ Lk + 1
2 Σk. (3.31)

The square of the spin 1
2Σ is

1
2 Σ · 1

2 Σ = (1
2 σ) · (1

2 σ) = 3
4 = 1

2 (1 + 1
2 ) ,

which shows that the field described by the Dirac equation has spin s = 1/2 .
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3.2.3 Bilinear Covariants

The presence of half-angles in Lorentz rotations, such as in (26), implies that
a rotation through an angle of 4π or a multiple of 4π is needed to bring a
spinor ψ(x) back to its initial value. Therefore, physical observables in the
Dirac theory must involve combinations of even powers of ψ(x), the simplest
being of the second power.

A simple example is provided by the current density. It can be derived
by multiplying (10) from the left by ψ and (11) from the right by ψ, and by
summing up the resulting expressions:

ψ(iγ · ∂ + iγ · ←−∂ )ψ = i∂µ(ψγµψ) = 0 .

The result has the form of a conservation law

∂µj
µ(x) = 0 , (3.32)

and immediately suggests the definition of a current for the free Dirac field

jµ(x) = ψ(x)γµψ(x) . (3.33)

The zero-component, j0 = ψ(x)γ0ψ(x) = ψ†ψ = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2,
can be interpreted as a probability density; it is real and positive, exactly
the property required. The current density jµ behaves as a Lorentz vector,
because using (24),

j′µ(x′) = ψ
′
(x′)γµψ′(x′)

= ψ(x)S−1γµSψ(x)

= aµ
νψ(x)γνψ(x) .

Then, since jµ is a vector, the divergence ∂µj
µ is a Lorentz-invariant and the

continuity equation (32) itself is invariant.
In view of applications to come, it is useful to determine now all the basic

bilinear covariants of the form ψΓψ, of which jµ = ψγµψ is but an example.
Since the dimension of the spinor representation is 4, there must exist 16
linearly independent 4×4 matrices, which can be constructed from products
of 0, 1, 2, 3, and 4 γ-matrices. They are

ΓS = 1 , Γµ
V = γµ , Γµν

T = σµν ,

Γµ
A = γ5γ

µ , ΓP = iγ5. (3.34)

Here we have introduced a new symbol

γ5 = γ5 = iγ0γ1γ2γ3

=
i

4!
εµνρσ γ

µγνγργσ . (3.35)
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In a general Lorentz transformation γ5 obeys the relation

S−1γ5S = S−1(iγ0γ1γ2γ3)S = (det a) γ5 , (3.36)

and so is invariant to a proper transformation (det a = +1) but changes sign
in an inversion or a reflection (det a = −1). Such transformation properties
are characteristic of pseudoscalar quantities. For similar reasons, γ5γ

µ trans-
forms as an axial vector. In the standard representation of the γ-matrices,
γ5 is given by

γ5 =

(

0 1
1 0

)

. (3.37)

The bilinear covariants associated with the Γs represent various couplings
the Dirac fields may have with themselves or with other fields. With the Γs
so chosen, they are real (Problem 3.3), independent from one another, and
have the characteristic Lorentz transformation properties shown in Table 3.1.

Table 3.1. Bilinear covariants

Representations Γ Lorentz transformations

Scalar 1 ψ̄′(x′)ψ′(x′) = ψ̄(x)ψ(x)

Pseudoscalar iγ5 ψ̄′(x′)iγ5ψ
′(x′) = det[a] ψ̄(x)iγ5ψ(x)

Vector γµ ψ̄′(x′)γµψ′(x′) = aµ
ν ψ̄(x)γνψ(x)

Axial vector γ5γ
µ ψ̄′(x′)γ5γ

µψ′(x′) = det[a] aµ
ν ψ̄(x)γ5γ

νψ(x)

Tensor σµν ψ̄′(x′)σµνψ′(x′) = aµ
α a

ν
β ψ̄(x)σαβψ(x)

3.3 Free-Particle Solutions

A plane-wave solution to the Dirac equation (10) is

ψ(x) = w(p) e−ip·x , (3.38)

where the coefficient w(p) is an x-independent spinor the four components of
which satisfy a system of homogeneous equations

(6p−m)ab wb(p) = 0 . (3.39)

For a nontrivial solution to the latter equations to exist, it is necessary that
det(6 p − m) = 0, which together with (8) gives m2 + p2 − p2

0 = 0 . This
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characteristic equation yields two possible eigenvalues for the energy, p0 =
±E, with E =

√

p2 +m2, to which correspond the wave functions

ψ±(x) =

{

u(p)e−ip·x ,

v(p)e+ip·x ,
(3.40)

where now pµ = (E, p) , with p0 = E > 0 in both cases. The stationary
spinors satisfy the equations

(6p−m)u(p) = 0 , (3.41)

(6p+m) v(p) = 0 . (3.42)

The spinor u(p) will be referred to as the positive-energy solution, and v(p)
as the negative-energy solution. The corresponding adjoint spinors, ū = u†γ0

and v̄ = v†γ0, obey the equations

ū(p)(6p−m) = 0 , v̄(p)(6p +m) = 0 . (3.43)

As spinors play an essential role in the study of the Dirac particles, it is im-
portant to examine in detail their properties. To facilitate the arguments, it
will be useful to adopt the standard representation of the γ-matrices. There-
fore, some results, such as the explicit form of the spinors, depend on the
specific representation chosen, but the final expressions for the observables
should be independent of the representation.

3.3.1 Normalized Spinors

In the rest frame of the particle (p = 0) equation (41) reads

m(γ0 − 1)u(0) = −2m

(

0 0
0 1

)

u(0) = 0 .

Here the matrix elements 0 and 1 are themselves 2× 2 matrices. Writing the
Dirac four-component spinor u in terms of two two-component Pauli spinors
ξ and η,

u =

(

ξ
η

)

,

the above equation yields η = 0 and two degenerate solutions for ξ .
For p 6= 0 (41) may be cast in the form

(E −m)ξ − σ · p η = 0 ,

σ · p ξ − (E +m)η = 0 .
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The solution obtained for the Pauli spinor,

η =
σ · p
E +m

ξ , (3.44)

then leads to two independent solutions

u(p, s) = N

(

χs

σ · p
E +m

χs

)

, (s = 1, 2), (3.45)

where N is a normalization factor. The Pauli spinors χs, for s = 1, 2, are
linearly independent and may be normalized according to χ†

sχs′ = δss′ .
The solutions to (42) can be similarly found:

v(p, s) = N ′

( σ · p
E +m

ηs

ηs

)

, (s = 1, 2), (3.46)

where ηs are two normalized Pauli spinors, η†sηs′ = δss′ .
The spinors χs and ηs may be chosen for example as the eigenvectors of

the spin operator 1/2σ3,

χ1 =

(

1
0

)

, χ2 =

(

0
1

)

, η1 =

(

0
1

)

, η2 =

(

−1
0

)

. (3.47)

They are related by

ηs = −iσ2 χs = (−)(1−2s)/2χ−s for s = ±1
2 . (3.48)

In this choice the subscripts s correspond to the eigenvalues of 1/2σ3 . The
phases of ηs are fixed so that the corresponding charge conjugate spinors (to
be introduced in Chap. 5) can be more simply defined. It is sometimes useful
to make the spin eigenvalues explicit in the labels according to the conversion
rules

χ1 = χ1/2
, χ2 = χ−1/2

, η1 = η1/2
, η2 = η−1/2

. (3.49)

They correspond up to a normalization constant to the Dirac spinors

u(0, 1) =







1
0
0
0






, u(0, 2) =







0
1
0
0






, v(0, 1) =







0
0
0
1






, v(0, 2) =







0
0
−1
0






.

(3.50)

In conclusion, the Dirac equation has four independent solutions u(p, s)
and v(p, s), with s = 1, 2 representing positive-energy and negative-energy
polarization states of a spin-1/2 field.
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3.3.2 Completeness Relations

To fix the normalization constant of the spinors, let us first calculate the
scalar product

u†(p, s)u(p, s′) = N2

(

1
σ · p
E +m

)(

1

σ · p/(E +m)

)

χ†
sχs′

= N2

(

1 +
(σ · p)2

(E +m)2

)

δss′ = N2 2E

E +m
δss′ .

Since u†u = ūγ0u behaves as the time component of a Lorentz vector, the
normalization factor N must be chosen so that the right-hand side of the last
equation has the same property,

u†(p, s)u(p, s′) = 2E δss′ , (3.51)

with a numerical factor fixed for convenience. This implies N =
√
E +m .

By the same token, with the normalization N ′ =
√
E +m the noncovariant

norm of v is given by

v†(p, s) v(p, s′) = 2E δss′ . (3.52)

Note however that v†(p,−s)u(p, s) 6= 0 but in contrast v†(−p, s′)u(p, s) = 0
and u†(p, s)v(−p, s′) = 0. The reason is that u(p, s) and v(−p, s), rather
than v(p, s) , are the eigenspinors of the Dirac Hamiltonian

Hp = γ0(γ · p +m) , (3.53)

with respective eigenvalues E and −E :

Hpu(p) = E u(p) ,

Hpv(−p) = −E v(−p) , (3.54)

and are therefore mutually orthogonal. The four spinors u(p, s) and v(−p, s)
for s = 1, 2 form a complete set in the spinor representation for any given p,
which implies the closure relation

2
∑

s=1

[

ua(p, s)u†b(p, s) + va(−p, s)v†b(−p, s)
]

= 2E δab , (3.55)

where a, b = 1, . . . , 4 label the spinor components.
The above results, written in terms of the Hermitian conjugates of spinors,

would be better re-expressed in terms of the spinor adjoint conjugates be-
cause the latter are just those involved in bilinear covariants. In general,
in order to make explicit calculations of bilinear covariants, one has to use
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Dirac’s equations (41)–(42). Let us for example evaluate the scalar product
ū(p, s)u(p, s′) . Multiplying (41) from the left by u†(p, s) gives

u†(p, s)(γ · p−m)u(p, s′) = u†(p, s)(γ0E − γ · p−m)u(p, s′) = 0. (3.56)

Its Hermitian conjugate, with the spin indices s, s′ interchanged, reads

u†(p, s)(γ† · p −m)u(p, s′) = u†(p, s)(γ0E + γ · p−m)u(p, s′) = 0. (3.57)

Summing the last two equations gives

Eu†(p, s)γ0u(p, s′) = mu†(p, s)u(p, s′) = 2Emδss′ ,

by making use of (51). The other three invariant products are calculated in

the same way, with the help of (41)–(42), (51)–(52), and γ†0 = γ0, γ
†
i = −γi,

leading to the results

ū(p, s)u(p, s′) = 2mδss′ ,

v̄(p, s) v(p, s′) = −2mδss′ ,

ū(p, s) v(p, s′) = v̄(p, s)u(p, s′) = 0 . (3.58)

The norms defined in this way are covariant. Note also that the norm of the
negative-energy spinor v is negative; the sign difference with the correspond-
ing noncovariant norm can be traced to the minus sign in the γ0 matrix that
comes with v̄ = v†γ0 .

To rewrite the completeness relation (55) in terms of ū and v̄, first note
that, with (54),

(Hp +E)u(p, s) = 2E u(p, s) ,

(Hp −E) v(−p, s) = −2E v(−p, s) ; (3.59)

that is, Hp ±E act as projection operators: Hp −E cancels u(p) but leaves
v(−p) essentially unchanged, whereas Hp +E cancels v(−p) but leaves u(p)
unchanged. However, these operators are not in a covariant form, an in-
convenience in an invariant theory, and so should be replaced by equivalent
operators which are. For this purpose, it suffices to note that

(6p−m)u = 0 ,

(6p+m)u = 2mu ,

and also

(6p+m) v = 0 ,

(6p−m) v = −2mv .

Then it is clear that 6 p ± m are precisely the operators we are seeking. It
is also useful to have them re-expressed in terms of spinors, which requires
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somewhat more work. When Hp + E is applied on both sides of (55), one
gets

∑

uu† on the left-hand side and Hp +E on the right-hand side:

∑

s

u(p, s)u†(p, s) = Hp +E = γ0(γ · p +m) +E . (3.60)

The desired result is obtained by multiplying both sides from the right by
γ0 :

∑

s

u(p, s)ū(p, s) = γ0E − γ · p +m = γµp
µ +m. (3.61)

Proceeding in the same manner with Hp −E, one gets

∑

s

v(−p, s)v̄(−p, s) = γ0E + γ · p −m, (3.62)

which, after reversing the sign of p on both sides, leads to the result

∑

s

v(p, s)v̄(p, s) = γ0E − γ · p−m = γµp
µ −m. (3.63)

It is useful to introduce next the operators

Λ+(p) ≡ 6p+m

2m
=

1

2m

∑

s

u(p, s)ū(p, s) ,

Λ−(p) ≡ − 6p+m

2m
= − 1

2m

∑

s

v(p, s)v̄(p, s) . (3.64)

Applied on an arbitrary spinor the operator Λ+(p) gives the positive-energy
components, while Λ−(p) projects out the negative-energy components. They
are therefore the projection operators for the positive-energy solutions and
the negative-energy solutions, respectively. Their basic properties are sum-
marized in the following relations, valid for any given momentum,

Λ2
± = Λ± ,

Λ+Λ− = Λ−Λ+ = 0 ,

Λ+ + Λ− = 1 . (3.65)

The last of these relations is just the covariant form of the closure relation
exactly equivalent to (55):

∑

s

[ u(p, s)ū(p, s) − v(p, s)v̄(p, s) ] = 2m. (3.66)
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3.3.3 Helicities

In this subsection we examine the exact physical significance of the two de-
grees of freedom s for each of the positive-energy or negative-energy solutions
of a free particle. For a particle at rest, p = 0, it is clear that the spinors
u(0, s) and v(0, s) can be constructed as eigenspinors of the spin operator

1
2
Σ 3 = 1

2

(

σ3 0
0 σ3

)

,

with s = 1, 2 associated with the eigenvalues ±1/2 . It suffices then to choose
the spinors as in (50). However, in general, for any nonvanishing momentum
vector p not lying in the z direction, the free-particle solutions given in (45)
and (46) are not eigenvectors of Σ 3. In other words, let χλ be the two-
component spinors that are eigenfunctions of the Hermitian matrix σ · p̂,

1
2

σ · p̂χλ = λχλ . (3.67)

Then the solutions to the Dirac equation for a free particle in (45) and (46),
but with the Pauli spinors χs and ηs both replaced by χλ, are the eigenspinors
of Σ · p̂ for p̂ = p/|p| . This follows from the simple fact that σ · p̂ commutes
with itself.

In two-component spinor space, it is even possible to diagonalize σ · n̂
for an arbitrary unit vector n̂ . However, as this operator does not generally
commute with σ · p̂ [which appears in the Dirac spinors (45) and (46) ], it is
not possible to construct the solutions to the Dirac equation for a free particle
as four-component eigenspinors of Σ · n̂ for an arbitrary n̂, unless n̂ = ±p̂

or n̂ = 0. Indeed, with the Hamiltonian defined in (53) and Σ considered as
a Heisenberg operator, the Heisenberg equation for Σ reads

dΣ

dt
= i [Hp,Σ] = −2(α× p) . (3.68)

As in general α × p 6= 0, it follows that dΣ/dt 6= 0 and the spin Σ is not
a constant vector (although the total angular momentum J = L + 1

2 Σ of
course is). Now forming the dot product of both sides of the above equation
with some constant vector n̂,

dΣ · n̂
dt

= −2(α× p) · n̂ , (3.69)

it is seen that dΣ · n̂/dt 6= 0, unless n̂ = 0 or n̂ = ±p̂ .

As L · p̂ = 0, one has J · p̂ = 1
2 Σ · p̂ . The operator J · p̂ or 1

2 Σ · p̂ is called
the helicity operator for a spin-1/2 particle. One refers to the eigenstates
of helicity h = +1/2 as the right-handed states (with spin oriented in the
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Fig. 3.1. Relative orientation of spin and momentum for left-handed and right-
handed particles

direction of motion), and to those of helicity h = −1/2 as the left-handed

states (with spin opposite to the direction of motion). See Fig. 3.1.
Given an arbitrary spinor, how can we extract its component having a

specified (circular) polarization? We expect that the operators that perform
this task are some covariant generalizations of an operator found in nonrela-
tivistic quantum mechanics,

P (n̂) = 1
2 (1 + σ · n̂) ,

which projects out of a given Pauli spinor the component polarized in the n̂

direction. The operators we are seeking will separate states s = 1 and s = 2,
just as Λ± separate the spinors u and v . They should be orthonormalized,
should have the correct nonrelativistic limit, and finally, should commute
with both Λ± . The operators that satisfy these conditions are

P (±n) = 1
2 (1 ± γ5 /n) , (3.70)

where nµ is a normalized spacelike vector, nµn
µ = −1 (to satisfy the first

two conditions), and is orthogonal to the particle momentum, nµp
µ = 0 (to

satisfy the last condition).
For a system at rest, p = 0, the condition nµp

µ = 0 implies n0 = 0,
and so to have n · n = −1, it suffices to orient nµ in the z direction, so that
nµ = (0, 0, 0, 1) . Then, in the standard representation of the γ-matrices,

P (±n) = 1
2 (1 ∓ γ5γ

3) = 1
2

(

1± σ3 0
0 1∓ σ3

)

. (3.71)

With the spinors χs and ηs in (45) and (46) chosen as eigenspinors of σ3, the
operators P (±n) perform the required tasks:

P (+n)u(0, 1) = u(0, 1) ,

P (−n)u(0, 2) = u(0, 2) ,

P (+n) v(0, 1) = v(0, 1) ,

P (−n) v(0, 2) = v(0, 2) , (3.72)
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and cancel the other three spinors in each case. The operator P (+n) projects
out the state with the polarization 1/2 in the rest frame of the particle for
a positive-energy solution (right-handed particle), and −1/2 for a negative-
energy solution (left-handed antiparticle). Similarly P (−n), mutatis mu-

tandis. Since (70) is Lorentz-invariant and gives the correct solution in a
particular Lorentz frame, it is the required operator valid in every Lorentz
frame.

When p 6= 0, one may choose n = np such that np is parallel to p:

np =

( |p|
m
,
p0

m
p̂

)

. (3.73)

With this choice, the polarization becomes identical to the helicity. This can
be seen for example by matrix multiplication, using the standard representa-
tion of the γ, as follows:

(1 + γ5 /np) (± 6p+m) = (1±Σ · p̂) (± 6p+m) ,

(1− γ5 /np) (± 6p+m) = (1∓Σ · p̂) (± 6p+m) ;

or alternatively,

P (np) Λ±(p) = 1
2

(1±Σ · p̂) Λ±(p) ,

P (−np) Λ±(p) = 1
2 (1∓Σ · p̂) Λ±(p) . (3.74)

Just as expected, P (np) projects out the positive-helicity component from a
positive-energy state and the negative-helicity component from a negative-
energy state, and similarly, P (−np) projects out the negative-helicity compo-
nent from a positive-energy state and the positive-helicity component from a
negative-energy state.

Projection operators are very useful in practice. In expressions where
specific states are selectively considered, they make possible the use of closure
relations and unnecessary explicit calculations of the spinors, replacing these
by known spin matrices. For example, the probability of a certain process may
be given by

∑

i(ūfΓui)(ūiΓ
′uf), where the summation is to be performed over

the two positive-energy spinors ui . Then the sum
∑

i uiūi can be replaced
by 6p +m = 2mΛ+(p) . On the other hand, if instead of summing over both
spin states, one calculates rather the probability for some given polarization,
then one just inserts the operator P (np) to project out the appropriate spin
component.

3.4 The Lagrangian for a Free Dirac Particle

As we have seen in the last chapter, a Lagrangian completely defines the
dynamics of any given system and embodies all of its symmetries. The La-
grangian for a free Dirac field is

L = ψ(iγµ∂µ −m)ψ . (3.75)
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Since L has dimension [E]4, the Dirac field must have dimension [E]
3/2 . The

Euler–Lagrange equations for the field variables ψ and ψ,

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= (iγµ∂µ −m)ψ = 0 ,

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= −(∂µψ iγµ +mψ) = 0 ,

correctly reproduce the Dirac equations (10) and (11). Noether’s theorem
introduced in the last chapter will now be applied to derive the conserved
currents associated with the symmetries of the system.

It is clear that the Dirac Lagrangian (75) is invariant to any constant
translation,

xµ → x′µ = xµ − aµ,

ψ(x)→ψ′(x′) = ψ(x) .

The associated current is the energy-momentum tensor

T µ
ν =

∂L
∂(∂µψ)

∂νψ + ∂νψ
∂L

∂(∂µψ)
− δµ

ν L

= ψ iγµ∂νψ , (3.76)

where ψ is a solution to the Dirac equation and, therefore, L = 0 . Since the
current is conserved, ∂µT µ

ν = 0, the corresponding ‘charge’ or momentum

Pν =

∫

d3x T 0
ν =

∫

d3xψ iγ0 ∂νψ (3.77)

is a constant of the motion. In particular, its zero-component defines the
energy or Hamiltonian of the system

H = P0 =

∫

d3xψ iγ0 ∂0ψ

=

∫

d3xψ†γ0(−iγ · ∇+m)ψ , (3.78)

where we can recognize the Hamiltonian operator Ĥ = γ0(−iγ · ∇+m) .
From the Lorentz transformation properties of the bilinear covariants ψψ

and ψγµψ (see Table 3.1), L is seen to be Lorentz-invariant. In an infinitesi-
mal Lorentz transformation, parameterized by εµν = −ενµ,

xµ → x′µ =xµ + εµν x
ν ,

ψ(x)→ ψ′(x′) =S(1 + ε)ψ(x) ,

the field variation is, according to (28),

δ0ψ(x) = − i

2
εµνJµν ψ(x) , (3.79)
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where Jµν are the generators of the infinitesimal Lorentz transformation,

Jµν = Lµν + 1
2
σµν , (3.80)

with Lµν = i(xµ∂ν −xν∂µ) representing the orbital part and σµν = i
2 [γµ, γν ]

the intrinsic part. To evaluate the Noether current density associated with
this symmetry, the general expression (2.189) becomes in this case

Mµ
ρσ =

∂L
∂(∂µψ)

δ0ψ

δερσ
+
δ0ψ

δερσ

∂L
∂(∂µψ)

+ L δxµ

δερσ
. (3.81)

As only the first term on the right-hand side is nonvanishing, using

δ0ψ

δερσ
= −iJρσψ = (xρ∂σ − xσ∂ρ)ψ −

i

2
σρσψ (3.82)

immediately carries (81) into the desired result

Mµ
ρσ = xρT µ

σ − xσT µ
ρ +

1

2
ψ γµσρσ ψ . (3.83)

The associated conserved ‘charge’ is the angular momentum tensor

Mρσ =

∫

d3xM0
ρσ

=

∫

d3x (xρT 0
σ − xσT 0

ρ) +
1

2

∫

d3xψ γ0σρσ ψ , (3.84)

where evidently the first integral on the last line represents the orbital com-
ponent, and the second, the intrinsic component.

The Lagrangian (75) is also invariant to complex phase transformations
of the fields,

ψ(x)→ ψ′(x) = e−iα ψ(x) ≈ ψ(x)− iαψ(x),

ψ(x)→ ψ
′
(x) = eiα ψ(x) ≈ ψ(x) + iαψ(x), (3.85)

where α stands for a real constant. These internal transformations change
only the fields, leaving untouched their coordinate arguments,

δ0ψ

δα
= −iψ ,

δ0ψ

δα
= iψ . (3.86)

The associated conserved current density and charge are

jµ =
∂L

∂(∂µψ)

δ0ψ

δα
+
δ0ψ

δα

∂L
∂(∂µψ)

= ψγµψ , (3.87)

Q =

∫

d3x j0 =

∫

d3xψ†ψ . (3.88)
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3.5 Quantization of the Dirac Field

In Dirac’s theory, the probability density given by the time component of a
conserved current, j0 = ψ†ψ for ψ = ψ+ or ψ = ψ− , is evidently positive-
definite. This result, by avoiding one of the obstacles initially met by the
Klein–Gordon equation, makes it possible to interpret the Dirac equation
as the basic equation for a one-particle system. However, Dirac could not
prevent the presence of negative-energy solutions, and it is a measure of his
genius to be able to turn this apparent difficulty to his advantage, giving us
at the same time the novel concept of antiparticle. As we have seen in the last
chapter, the negative-energy solution to the Klein–Gordon equation can be
interpreted as the wave function of an antiboson of electric charge opposite to
that of the particle described by the positive-energy solution, and the current
density of the theory must be considered not as a probability current density
but rather as a charge current density. A similar interpretation applies to
the present case as well, and should even emerge quite naturally when one
considers processes in which particles are created or destroyed, such as n →
p+e− + ν̄ or γ → e+ +e−, because, clearly, what is conserved then is not the
probability of finding a given particle in the space volume but rather the total
electric charge of the system. The problem becomes a many-body problem
for which the quantum field theory is the most appropriate approach. The
classical Dirac field is then treated as a field operator which describes the
creation and annihilation of fermions and antifermions at all points in space-
time, paralleling the role played by the quantized Klein–Gordon field for
bosons and antibosons. However, there is a fundamental difference between
the two cases that must be taken into account in the formulation, namely, the
existence for fermions of a rule (the Pauli exclusion principle) that forbids
the presence of more than one fermion of the same kind in the same state.

The four solutions to the Dirac equation for a free particle

ψ(+)
p,s (x) = Cpψ+(x) = Cpu(p, s) e−ip·x ,

ψ
(−)
−p,−s(x) = Cpψ−(x) = Cpv(p, s) eip·x , (3.89)

are the eigenvectors of Ĥ with energies Ep and −Ep (p0 = Ep =
√

p2 +m2),
and of spin sz = ±1/2 . According to (66) they form a complete set in the
spinor representation and, with normalization Cp = 1/

√

(2π)3 2Ep, satisfy
the orthonormality relations

∫

d3xψ
(+)†
p′,s′(x)ψ

(+)
p,s (x) = δ(p′ − p) δs′s ,

∫

d3xψ
(−)†
p′,s′ (x)ψ

(−)
p,s (x) = δ(p′ − p) δs′s ,

∫

d3xψ
(+)†
p′,s′(x)ψ

(−)
−p,−s(x) =

∫

d3xψ
(−)†
−p′,−s′(x)ψ

(+)
p,s (x) = 0 . (3.90)
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The wave function ψ
(+)
p,s (x) is the solution for a positive-energy state of

momentum p and polarization s, whereas ψ
(−)
−p,−s(x) is the wave function for

a negative-energy state of momentum −p and polarization −s, which is how-
ever more conveniently reinterpreted as describing a state of an antiparticle
of positive energy, momentum p, and polarization s . Note that, apart from
the presence of the spin, the situation is exactly the same as in the case of the
solutions to the Klein–Gordon equation and therefore, this reinterpretation
can be similarly justified.

The formalism of the classical fields discussed in the previous section is
converted into a quantum field theory by simply treating the Dirac field ψ
as a quantum operator. The fields ψ and ψ are expanded over the complete

set of eigenspinors ψ
(±)
p,s :

ψ(x) =
∑

p,s

[

ψ(+)
p,s (x) b(p, s) + ψ

(−)
−p,−s(x) d

†(p, s)
]

,

ψ(x) =
∑

p,s

[

ψ
(+)

p,s (x) b†(p, s) + ψ
(−)

−p,−s(x) d(p, s)
]

(3.91)

(where
∑

p =
∫

d3p), and the expansion coefficients are treated as operators
of creation and destruction:

b(p, s) destroys a particle of momentum p and polarization s,
d(p, s) destroys an antiparticle of momentum p and polarization s,
b†(p, s) creates a particle of momentum p and polarization s,
d†(p, s) creates an antiparticle of momentum p and polarization s .

3.5.1 Spins and Statistics

The creation and annihilation operators applied on the ground state, the
vacuum |0〉, produce states of one or several particles called the Fock states.
Thus, for example, the state of one particle of momentum p (suppressing spin
for the moment) is given by

|p〉 = C−1
p b†p |0〉 , (3.92)

and the state of two identical particles of momenta p and p′ is given by

|p,p′〉 = C−1
p′ C

−1
p b†p′b

†
p |0〉 . (3.93)

The probability for finding two particles of the same kind of momenta p and
p′ in an arbitrary physical state Ψ is | 〈Ψ |p,p′ 〉 |2 . As the two particles are
identical, they cannot be distinguished by any experiment; all that can be
said is that one of them has momentum p and the other momentum p′, a
statement that can be translated into the equation

| 〈Ψ |p,p′ 〉 |2 = | 〈Ψ |p′,p〉 |2 , (3.94)
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which implies (for some real φ)

〈Ψ |p,p′ 〉 = eiφ 〈Ψ |p′,p〉 .

Since two successive permutations of the particles must return |p,p′〉 to the
same state, this also means

〈Ψ |p,p′ 〉 = ±〈Ψ |p′,p〉 , (3.95)

or, since Ψ is arbitrary,

|p,p′〉 = ± |p′,p〉 . (3.96)

The two solutions correspond to the two possible statistics for identical quan-
tum particles: in the Bose–Einstein statistics the Fock states are symmetric

under a permutation of any two particles, while in the Fermi–Dirac statistics
they are antisymmetric. Particles obeying the Bose–Einstein statistics are re-
ferred to as bosons, and those obeying the Fermi–Dirac statistics as fermions.
The creation and annihilation operators for a boson field satisfy commutation

relations, whereas those for a fermion field satisfy anticommutation relations.
Let us assume from now on that b and b† are operators for a fermion field.

The anticommutation relation

bp′bp + bpbp′ ≡ {bp′ , bp} = 0

implies that bpbp = 0, or that two identical fermions cannot occupy the same
state. The operator for the occupation number of the individual state p is

Nb = b†pbp .

It follows from the anticommutation rules that Nb(1−Nb) = 0, which means
that the number of fermions of a given kind occupying a given individual
state is either 0 or 1 . This is the Pauli exclusion principle.

There exists in quantum field theory a general theorem giving a con-
nection between spins and statistics. It states that for a Lorentz-invariant
local field theory in four-dimensional space-time admitting a unique vacuum
state, the fields of integral spins are quantized as Bose–Einstein fields and the
fields of half-integral spins are quantized as Fermi–Dirac fields if the micro-
causality condition is satisfied. A local theory means the Lagrangian density
describing the theory contains fields that refer to a single space-time point.
The microcausality condition means the local density operators do not in-
terfere, that is, they commute (or anticommute) for spacelike separations.
The predictions of this fundamental theorem are in perfect agreement with
experimental observations.
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3.5.2 Dirac Field Observables

From the above arguments, the Dirac field operator ψ and its canonical mo-
mentum, iψ†, must satisfy the following anticommutation (rather than com-
mutation) quantization rules:

{ψa(t,x), ψ†
b(t, y)} = δabδ(x− y) ;

{ψa(t,x), ψb(t, y)} = 0 ; (3.97)

which lead to the corresponding algebra for the associated creation and an-
nihilation operators:

{b(p′, s′), b†(p, s)} = δss′δ(p′ − p) ;

{d(p′, s′), d†(p, s)} = δss′δ(p′ − p) ;

{b(p′, s′), b(p, s)} = {b(p′, s′), d(p, s)} = 0 ;

{d(p′, s′), d(p, s)} = {b(p′, s′), d†(p, s)} = 0 . (3.98)

The Hamiltonian H can be expressed in terms of the static operators by
substituting (91) in (78) and using (89):

H =

∫

d3xψ†(x)
∑

p,s

Ep

[

ψ(+)
p,s (x) b(p, s) − ψ(−)

−p,−s(x) d
†(p, s)

]

=
∑

p,s

Ep

[

b†(p, s) b(p, s)− d(p, s) d†(p, s)
]

. (3.99)

If ψ and ψ were classical fields, b and d would be c-number coefficients, the
second term in (99) would be negative, and the field energy H could not be
positive-definite. Therefore a classical Dirac field cannot exist. On the other
hand, if b and d are operators that commute as in the case of the boson fields,
the energy again will not be positive definite and will not have a lower bound.
The only possible way to have a positive value for the second term in (99) is to
make d(p, s)d†(p, s) change signs when d and d† are interchanged, that is, to
require that d and d† (and by extension b and b†) obey the anticommutation
relations (98). The Hamiltonian operator is then given by

H =
∑

p,s

Ep [b†(p, s) b(p, s) + d†(p, s) d(p, s) ] . (3.100)

As in the boson field case, an additive constant, interpreted as the vacuum
energy, has been dropped. The total energy of the field appears then as a
sum of positive-energy contributions from all different modes of fermions and
antifermions.

The procedure leading to (100) can be summarized by the formula

H =

∫

d3x : ψiγ0∂0ψ :

=
∑

p,s

Ep

[

b†(p, s) b(p, s) + d†(p, s) d(p, s)
]

. (3.101)
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It consists in writing the products of the creation and annihilation opera-
tors in the normal order (symbolized by : :) by reordering the factors such
that the creation operators are to the left of the destruction operators taking
into account all sign changes arising from permutations of operators in accor-
dance with their statistics. The final additive constant term, independent of
operators, which results from these operations, is identified with the vacuum
expectation value 〈0 |H | 0〉 and dropped. In what follows, the normal order
of field products in the expressions for observables is always assumed, even
though the notation : : may not be used explicitly.

The field momentum (77) can be similarly calculated by noting that

∇ψ(+)
p,s (x) = ipψ

(+)
p,s (x) and ∇ψ(−)

−p,−s(x) = −ipψ
(−)
−p,−s(x) and using the or-

thogonality properties of the basis functions:

P = −i

∫

d3x : ψ†(x)∇ψ(x) :

=
∑

p,s

p :
[

b†(p, s) b(p, s)− d(p, s) d†(p, s)
]

:

=
∑

p,s

p
[

b†(p, s) b(p, s) + d†(p, s) d(p, s)
]

. (3.102)

Finally, the charge operator (88) is found to be

Q =

∫

d3x : ψ†(x)ψ(x) :

=
∑

p,s

:
[

b†(p, s) b(p, s) + d(p, s) d†(p, s)
]

:

=
∑

p,s

[

b†(p, s) b(p, s)− d†(p, s) d(p, s)
]

. (3.103)

3.5.3 Fock Space

To gain a better physical understanding of the formalism, let us study the
observables for states in the Fock space and in particular for the one-fermion
or one-antifermion states

|p, s〉 = C−1
p b†(p, s) |0〉 , |p, s〉 = C−1

p d†(p, s) |0〉 . (3.104)

First note the identity valid for any three arbitrary operators

[AB,C] = A {B,C} − {A,C}B . (3.105)

The operator algebra (98) and the above expressions for H , P, and Q can be
used to derive the following relations:

[H, b†(p, s)] = Epb
†(p, s) , [H, d†(p, s)] = Epd

†(p, s) ,

[P, b†(p, s)] = p b†(p, s) , [P, d†(p, s)] = p d†(p, s) ,

[Q, b†(p, s)] = b†(p, s) , [Q, d†(p, s)] = −d†(p, s) .
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By taking their Hermitian conjugates while recalling the hermiticity of the
operators H , P, and Q, one obtains similar equations involving b(p, s) or
d(p, s) in place of b†(p, s) or d†(p, s) . Then the energies, momenta, and
charges for one-particle states are given by

H |p, s〉 = [H, b†(p, s)] |0〉 C−1
p = Ep |p, s〉 ,

P |p, s〉 = [P, b†(p, s)] |0〉 C−1
p = p |p, s〉 ,

Q |p, s〉 = [Q, b†(p, s)] |0〉 C−1
p = |p, s〉 ,

and for one-antiparticle states by

H |p, s〉 = [H, d†(p, s)] |0〉 C−1
p = Ep |p, s〉 ,

P |p, s〉 = [P, d†(p, s)] |0〉 C−1
p = p |p, s〉 ,

Q |p, s〉 = [Q, d†(p, s)] |0〉 C−1
p = − |p, s〉 .

It is now clear that b†(p, s) increases the energy of the system by Ep,
its momentum by p, and its charge by a unit of charge, while d†(p, s) also
increases the energy of the system by Ep, its momentum by p, but reduces
its charge by a unit of charge. One can similarly show that b(p, s) and d(p, s)
both reduce the energy and momentum of the system by Ep and p, but while
b(p, s) reduces the charge by one unit, d(p, s) increases it by the same amount.
In other words, b†(p, s) creates and b(p, s) destroys a particle of energy Ep,
momentum p, and of unit charge, whereas d†(p, s) creates and d(p, s) destroys
an antiparticle of energy Ep, momentum p, and of charge equal in magnitude
but opposite in sign to the unit charge. Since E2

p− p2 = m2 in both cases, a
particle and its conjugate antiparticle that are associated with the same field
operator have equal masses.

The polarization states can be understood as follows. The intrinsic part
of the angular momentum tensor, given by (84)

Sij = 1
2

∫

d3xψ†σijψ , (3.106)

leads to the definition for the spin operator

Si = iεijkSjk . (3.107)

To simplify we consider just its third component

S3 ≡ Sz =
∑

p,s,s′

(2π)3C2
p

[

u†(p, s′)1
2 Σzu(p, s) b

†(p, s′)b(p, s)

− v†(p, s′)1
2
Σzv(p, s) d

†(p, s)d(p, s′)

+ u†(p, s′)1
2
Σzv(−p, s) b†(p, s′)d†(−p, s) e2iEt

+ v†(−p, s)1
2 Σzu(p, s

′) d(−p, s)b(p, s′) e−2iEt
]

.



82 3 Fermion Fields

By definition b(p) |0〉 = d(p) |0〉 = 0, and by rotational invariance Sz |0〉 = 0 .
Application of Sz on a one-particle state and a one-antiparticle state yields

Szb
†(k, r) |0〉 =

[

Sz, b
†(k, r)

]

|0〉
= +(2π)3C2

k

∑

s

u†(k, s)1
2 Σzu(k, r)b

†(k, s) |0〉 , (3.108)

Szd
†(k, r) |0〉 =

[

Sz, d
†(k, r)

]

|0〉
= −(2π)3C2

k

∑

s

v†(k, r)1
2 Σzv(k, s)d

†(k, s) |0〉 . (3.109)

If the z axis is chosen in the same direction as the momentum vector
k̂ = k/|k|, then 1

2
Σz = 1

2
Σ · k̂ represents the helicity. In the rest frame,

where k = 0, it is then convenient to choose the spinors u(0, r) and v(0, r) as
eigenspinors of 1

2 Σz with eigenvalues +1/2 and −1/2 for r = 1, 2 . In a general
frame where k = |k|ẑ 6= 0, the spinors u(k, r) and v(k, r) remain eigenspinors
of 1

2
Σz with eigenvalues λr (λ1 = +1/2, λ2 = −1/2):

1
2 Σ · k̂u(k, r) = λru(k, r) ,

1
2 Σ · k̂ v(k, r) = λrv(k, r) .

Using the normalization (51) and (52), we immediately obtain

Szb
†(k, r) |0〉 = λr b

†(k, r) |0〉 , (3.110)

Szd
†(k, r) |0〉 = −λr d

†(k, r) |0〉 . (3.111)

These results tell us that b†(k, 1) and d†(k, 2) create states of helicity +1/2,
while b†(k, 2) and d†(k, 1) create states of helicity −1/2 .

Just as for the boson fields, the quantum fields ψ(x) and ψ(x) are related

to the c-valued wave functions ψ
(+)
p,s (x) and ψ

(−)
−p,−s(x) . For example, ψ

(+)
p,s (x)

can be interpreted as the annihilation amplitude of a particle at point x,
〈0 |ψ(x) | ps〉, and the spinor u(p, s) is associated with an incoming fermion of

momentum p and polarization s . Similarly,ψ
(−)
−p,−s(x) represents the creation

amplitude of an antiparticle at x, and the spinor v(p, s) is associated with an
outgoing antifermion of momentum p and polarization s . To summarize,

〈0|ψ(x)|ps〉 = u(p, s) e−ip·x →−• annihilation of a particle,

〈ps|ψ(x)|0〉 = ū(p, s) eip·x •→− creation of a particle,

〈ps|ψ(x)|0〉 = v(p, s) eip·x •−← creation of an antiparticle,

〈0|ψ(x)|ps〉 = v̄(p, s) e−ip·x −←• annihilation of an antiparticle.

3.6 Zero-Mass Fermions

When the field is massless, the Dirac theory may be formulated in terms
of two-component spinors. This simplification proves to be quite useful in
the study of neutrinos, which have very small masses, or of particles of non-
vanishing masses at very high energies, where their masses can be neglected
in comparison with their kinetic energies.
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If ψ is a solution to the Dirac equation

(iγµ∂µ −m)ψ = 0 , (3.112)

γ5ψ obeys the equation

(iγµ∂µ +m)γ5ψ = 0 . (3.113)

The two equations are different for a nonvanishing mass. But when m = 0
they become identical and the spinors ψ and γ5ψ are proportional to each
other. In other words, for m = 0 the Dirac equation may be written as

i
∂

∂t
ψ = Ĥψ , (3.114)

where Ĥ = −iγ0γ · ∇ . Since [Ĥ, γ5] = 0, the matrices Ĥ and γ5 are simulta-
neously diagonalizable, and common eigenfunctions can be found for Ĥ and
γ5 . As γ2

5 = 1, the eigenvalues of γ5 are ±1 . An eigenspinor with eigenvalue
+1 for γ5 is said to have a positive chirality; when its eigenvalue for γ5 is
−1, it is said to have a negative chirality. We now proceed to describe these
spinors.

For m = 0, (54) reduces to

γ0γ · pu(p, h) = E u(p, h) ,

γ0γ · p v(−p, h) = −E v(−p, h) , (3.115)

where E = |p| . As already mentioned, u(p, h) and v(p, h) can always be
chosen as eigenspinors of the helicity operator:

Σ·p̂u(p, h) = 2hu(p, h) ,

Σ·p̂ v(−p, h) = 2h v(−p, h) . (3.116)

From the definition γ5 = iγ0γ1γ2γ3, one gets γ5γ
0 = −i γ1γ2γ3, and so

γ5γ
0γ1 = i γ2γ3 = σ23 = Σ 1 . In general, γ5γ

0γi = Σ i . Applying γ5 from
the left on both sides of (115) and using (116), one gets

γ5 u(p, h) = Σ·p̂u(p, h) = 2hu(p, h) ,

γ5 v(−p, h) = −Σ·p̂ v(−p, h) = −2h v(−p, h) . (3.117)

This means in particular that for an arbitrary vector p, the spinors u(p,+1/2)
and v(p,−1/2) are eigenspinors of γ5 of positive chirality +1, while u(p,−1/2)
and v(p,+1/2) have negative chirality −1 . Thus, for a zero-mass particle,
chirality and helicity are equivalent and are Lorentz-invariant. On the other
hand, for a particle with a nonvanishing mass, chirality is not well defined,
but states of such a particle can still be identified by their helicities. As it
is the scalar product of two three-vectors, Σ·p̂, the helicity is invariant to
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spatial rotations, which makes a description of states in terms of helicities
often useful. However, a general Lorentz transformation will mix up states
of different helicities. For example, a particle of nonvanishing mass with a
positive helicity in a given inertial frame will have a negative helicity in a
frame in which its direction of motion is reversed. Thus, a Dirac particle
with a nonzero mass must occur in both helicity states.

Any spinor ψ, massive or not, can be decomposed into two components
of well-defined chiralities, called the Weyl spinors,

ψ = ψR + ψL ,

ψR = 1
2 (1 + γ5)ψ, γ5ψR = +ψR,

ψL = 1
2 (1− γ5)ψ, γ5ψL = −ψL . (3.118)

From (91) and (117), their Fourier series can be written as

ψR =
∑

p

[

ψ
(+)

p,1/2
b(p, 1/2) + ψ

(−)

−p,1/2
d†(p,−1/2)

]

,

ψL =
∑

p

[

ψ
(+)

p,−1/2
b(p,−1/2) + ψ

(−)

−p,−1/2
d†(p, 1/2)

]

. (3.119)

According to (119), ψR destroys positive-helicity states of particle and creates
negative-helicity states of antiparticle, whereas ψL destroys h = −1/2 states
of particle and creates h = +1/2 states of antiparticle. Table 3.2 summarizes
these results.

For a zero-mass particle, chirality is well defined and Lorentz-invariant,
and so ψ can exist either as a left-handed state, ψL, or as a right-handed
state, ψR . For a given momentum p, a massless particle can have its spin
oriented parallel or antiparallel to its direction of motion, and each state can
be described by a two-component spinor. Indeed, when m = 0, the Dirac
Hamiltonian Ĥ = −iγ0γ · ∇ involves only three matrices, namely, γ0γi for
i = 1, 2, 3, which satisfy the algebra

{γ0γi, γ0γj} = 2 δij , i, j = 1, 2, 3 . (3.120)

These relations can be satisfied by the 2 × 2 Pauli matrices, obviating the
need for a formulation in terms of four-component spinors. The situation
becomes particularly transparent when γ5 is diagonal, as in the Weyl or
chiral representation of the γµ matrices defined by

γ0 =

(

0 −1
−1 0

)

, γi =

(

0 σi

−σi 0

)

, γ5 =

(

1 0
0 −1

)

. (3.121)

In this representation the Weyl spinors of chiralities γ5 = +1 and γ5 = −1
take respectively the forms

ψR =

(

χR

0

)

and ψL =

(

0

χL

)

, (3.122)
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Table 3.2. Chirality and helicity

Spinors Chirality γ5 Helicity h

ψ
(+)

p,1/2
(x) u(p,+1/2) +1 1/2

ψ
(−)

−p,1/2
(x) v(p,−1/2) +1 −

1/2

ψ
(+)

p,−1/2
(x) u(p,−1/2) −1 −

1/2

ψ
(−)

−p,−1/2
(x) v(p,+1/2) −1 1/2

where χR and χL are two-component spinors. Dirac’s equation then becomes
a system of two uncoupled equations for two-component spinors:

i∂0χR = −iσ · ∇χR ,

i∂0χL = iσ · ∇χL . (3.123)

The Lagrangian for a Dirac particle with mass m 6= 0, given by (75), may
be rewritten in terms of Weyl spinors:

L = ψR iγµ∂µ ψR + ψL iγµ∂µ ψL −m(ψR ψL + ψL ψR) . (3.124)

The components of opposite helicities are connected in the mass term and
both therefore necessarily appear for a fermion of nonvanishing mass. How-
ever, when m = 0, the Lagrangian breaks up into two independent parts, one
for each chirality,

L = χ†
R iσµ∂µχR + χ†

L iσ̄µ∂µχL , (3.125)

where

σµ = (1,σ) , σ̄µ = (1,−σ) . (3.126)

This decomposition into left- and right-handed states not only simplifies the
formalism but also turns out to be a necessity because it is now known that
only left-handed neutrinos and right-handed antineutrinos exist and they can
be described naturally in terms of the Weyl spinors. Right-handed neutrinos,
even if they exist, are not observed in weak interaction reactions, are not
coupled to known particles, and cannot acquire mass through interactions.
Therefore, models of weak interactions will involve only left-handed neutrinos
and right-handed antineutrinos.
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Problems

3.1 Boosting a fermion from rest. The Dirac spinor for a free particle
of momentum p can be obtained from the corresponding solution for p = 0
by a Lorentz boost. As an example, calculate u(p, s) = SL(ω)

√
2mu(0, s),

where ωµν give the boost parameters.

3.2 Γ matrices. (a) Prove that Γi, i =S, V, T, A, P, satisfy the conjugation

property, γ0Γ
†
iγ0 = Γi, and produce 16 linearly independent matrices. (b)

Show that two sets γµ and γ′µ satisfying the relation γµγν + γνγµ = 2gµν are
related by γ′µ = SγµS

−1 for some 4 × 4 matrix S [for help, consult Good,
R. H., Rev. Mod. Phys. 27 (1955) 187].

3.3 Bilinear covariants. Prove that the bilinear covariants given in Table
3.1 are Hermitian, and satisfy the Lorentz transformation properties shown
in the table.

3.4 Majorana and Weyl representations. (a) Find the matrices S
that transform the Pauli–Dirac standard representation of the γ-matrices
into their Majorana and the Weyl representations:

γ(M)
µ = SMγµS

−1
M ,

γ(W)
µ = SWγµS

−1
W ,

where the Majorana representation is defined by

γ1 =

(

iσ3 0
0 iσ3

)

, γ2 =

(

0 −σ2

σ2 0

)

, γ3 =

(

−iσ1 0
0 −iσ1

)

,

γ0 =

(

0 σ2

σ2 0

)

, γ5 =

(

σ2 0
0 −σ2

)

;

and the Weyl representation by

γ0 =

(

0 −1
−1 0

)

, γi =

(

0 σi

−σi 0

)

, γ5 =

(

1 0
0 −1

)

.

(b) Find the analogs of the spinors (45) and (46) in the Majorana and Weyl
representations of the γµ matrices.

3.5 Orthogonality of spinors. Prove the following relations:
(a) v†(p, s)u(p, s′) = u†(p, s)v(p, s′) = δss′ 2σ · p/(E +m) ,
(b) v†(−p, s)u(p, s) = 0 .

3.6 Closure relation. Let ψ(p) be an arbitrary spinor of momentum pµ

given by the sum

ψ(p) =
∑

s

[Asu(p, s) + Bsv(−p, s)] .

Calculate the coefficients As and Bs, and prove the closure relation (55) .
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3.7 Gordon identities. Let ψ1 and ψ2 be solutions to the Dirac equations
(iγµ∂µ −mi)ψi(x) = 0. Prove the following relations:

(m1 +m2)ψ2γµψ1 = ψ2

(

−i
←−
∂ µ + i

−→
∂ µ

)

ψ1 + ∂ν
(

ψ2σµνψ1

)

,

(m1 +m2)ψ2γµγ5ψ1 = (−i∂µ)
(

ψ2γ5ψ1

)

+ ψ2

(

−i
←−
∂ ν + i

−→
∂ ν

)

σµ
νγ5ψ1 .

3.8 Fierz transformation. As the 16 Γi matrices in Problem 3.2, with
i =S, V, T, A, P, form a complete set of N = 4 matrices, any product of
bilinear covariants of the form (ū1Γ

iu2)(ū3Γ
ju4) can be expressed as a linear

combination of similar products written with a different sequence of spinors

(ū1Γ
iu2)(ū3Γ

ju4) =
∑

mn

Cij
mn(ū1Γ

mu4)(ū3Γ
nu2) .

In general, the spinors ui refer to different particles. Show that

Cij
mn =

1

NmNn
Tr(ΓiΓnΓjΓm).

Γi are assumed to be orthonormalized such that Tr (ΓiΓj) = Niδij.

3.9 The Dirac Lagrangian. Show that the Lagrangian

LF = ψ [ 12 iγµ−↔∂ µ −m]ψ

differs from (75) only by a total derivative and therefore leads to the same
equation of motion.

3.10 Spin of hyperon Λ. Λ0 particles are produced in the reaction
π− + p → K0 + Λ0 and are identified by their subsequent disintegrations
Λ → π− + p . Assuming that the proton spin (1/2) and the π, K spins (0)
are known, we want to determine the spin of Λ0 . (a) For K and Λ produced
in the direction of the incoming beam (parallel to the z axis chosen as the
axis of quantization), what are the possible values of Sz , the z component
of the Λ spin? (b) For polarized protons, show that in the Λ rest frame the
angular distributions of Λ produced in the incident beam direction are given
for different values of Λ by

SΛ = 1/2 isotropic,

SΛ = 3/2 (1 + 3 cos2 θ),

SΛ = 5/2 (1− 2 cos2 θ + 5 cos4 θ) ,

where θ is the relative angle of the Λ disintegration products. (The observed
distributions turn out to be isotropic, indicating that the Λ spin is most likely
equal to 1/2.)
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3.11 Anticommutation relations between Dirac fields. Let ψa(x),
with a = 1, . . . , 4, be the components of the Dirac spinor of a free particle of
mass m .
(a) Using the completeness of spinors and (98), show that for x0 = y0,

{ψa(x), ψ†
b(y)}|x0=y0 = δab δ(x− y) .

(b) Using projection operators and (98), show that for arbitrary x and y,

{ψa(x), ψ†
b(y)} = −iSab(x− y,m),

where

S(x,m) = −(iγ · ∂ +m)∆(x,m)

= −(iγ · ∂ +m)
−i

(2π)3

∫

d4p e−ip·xδ(p2 −m2) ε(p0) .

Here ε(x) = 1 for x ≥ 0 and ε(x) = 0 for x < 0.
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