
2 Boson Fields

Nonrelativistic quantum mechanics, useful as it is in the formulation of all
fields of modern physics and in their applications, nevertheless has limita-
tions. In particular, it is not generally applicable to the study of elementary
particles because it cannot properly predict the dynamic behavior of systems
evolving at high velocities and, in its usual formulation, cannot account for
the phenomena of creation and annihilation of particles that regularly occur
at high energies. Two concepts – special relativity and field – have crucially
contributed to the creation of relativistic quantum field theory, which has
unquestionably become the foundation of particle physics. It is then possi-
ble, for example, to have a natural explanation for the existence of spins of
particles, to make the connection between particles and interactions, and to
associate to each particle a charge conjugate particle.

In nonrelativistic quantum mechanics, the wave function φ(t,x) of a par-
ticle of mass m in the absence of any interaction obeys the Schrödinger equa-
tion, written in natural units with h̄ = c = 1,

i
∂

∂t
φ(t,x) = − 1

2m
∇2 φ(t,x) . (2.1)

Comparison with the energy-momentum relation for a nonrelativistic particle

E = p2/2m (2.2)

suggests the correspondence rules

E → i
∂

∂t
; p→ −i∇ = −i

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

. (2.3)

An equation that generalizes (1) to the relativistic regime must have at
least a homogeneous coordinate dependence and be symmetric in space and
time, a requirement that suggests two possibilities; one, involving only second
derivatives and of the general form

a
∂2

∂t2
φ(t,x) =

(

3
∑

i=1

bi
∂2

∂xi2
+m2

)

φ(t,x) , (2.4)
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and the other, involving only first derivatives,

iγ0 ∂

∂t
φ(t,x) =

(

−i

3
∑

i=1

γi ∂

∂xi
+m

)

φ(t,x) . (2.5)

In these equations, a, bi, γ0, γi, and m are a priori complex constants to
be determined in accordance with the relativistic energy-momentum relation
for a free particle,

E2 = p2 +m2 . (2.6)

So it becomes apparent that relativity will be called on to play a key role in
the solution to this problem and justifies a careful examination of Lorentz
invariance. It forms the subject of the following section. In the next four sec-
tions we discuss the second-quantized scalar and vector field solutions to (4),
called the Klein–Gordon equation. We close the chapter with considerations
of the action function and of Noether’s theorem.

2.1 Lorentz Symmetry

In Newtonian physics, physical laws are stated in terms of equations that pre-
serve their forms when coordinates are changed by a Galilean transformation
(one that independently changes the position vector and the time parameter
by constant amounts). This invariance, called the Galilean invariance, char-
acterizes Newtonian mechanics. We now know, since Einstein, that nature is
endowed with a higher symmetry, including Galilean symmetry as a special
case. The transformations that define this symmetry are called the Lorentz
transformations; they leave invariant (unchanged in magnitude) the speed
of light, and covariant (unchanged in form) the Maxwell equations and, in
general, all physical equations. Therefore, it is important to have a detailed
look at what constitutes the fundamental principle of special relativity and
indeed of all contemporary physics.

2.1.1 Lorentz Transformations

As the coordinates of space and time are to be treated on the same footing,
it is convenient to gather them into a single four-component object which
behaves by its transformation properties as a vector in a four-dimensional
space that one may call space-time:

xµ = (x0, x1, x2, x3) = (t,x) . (2.7)

In this notation, µ and other Greek indices take on the values 0, 1, 2, 3; the
coordinate x0 stands for the time parameter t, and x1, x2, x3 (or x, y, z) are
the Cartesian components of the usual position vector x . We will use Latin
indices i, j, . . ., restricted to values 1, 2, 3, to indicate space components.
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A Lorentz transformation is a transformation of some coordinate system
{xµ} into another system {x′µ} such that

x′µ = aµ
0 x

0 + aµ
1 x

1 + aµ
2 x

2 + aµ
3 x

3

= aµ
ν x

ν . (2.8)

We follow here the usual convention that a summation over repeated indices
(taking all admissible values) is understood. The parameters of the transfor-
mation, aµ

ν , are real constants that specify the relative spatial orientations
and the relative velocities of the two reference frames. One can recognize in
(8) a generalization to four dimensions of the familiar rotation laws relating
to cartesian coordinates. Let us consider some examples.

Example 2.1 Space Rotation

A rotation of a coordinate system about the 3 or z axis by a positive angle θ in
the counterclockwise direction is defined by the real coefficients aµ

ν arranged
as the elements of a 4 × 4 matrix, where the first index µ = 0, 1, 2, 3 labels
the columns and the second index ν = 0, 1, 2, 3 labels the rows,

aµ
ν =







1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1






, (2.9)

where 0 ≤ θ < 2π . Note that the matrix is unimodular, det a = 1 . As with
any other space rotation, this particular rotation mixes space coordinates,
leaving untouched the time component:

x′0 = x0 ,

x′1 = x1 cos θ+ x2 sin θ ,

x′2 = −x1 sin θ + x2 cos θ ,

x′3 = x3 . (2.10)

Occasionally, it is useful to define the complex combinations

x(±) = ∓ 1√
2
(x1 ± ix2) (2.11)

(called the circular or spherical components), which transform as

x′(±) = e∓iθ x(±) . (2.12)

When θ is very small we may use a linear approximation in which aµ
ν =

δµ
ν + εµν for

εµν = θ







0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0






. (2.13)
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As defined in (10), aµ
ν describes a passive rotation, which leaves the

physical system unchanged. In an active rotation, where the physical system
(rather than the reference system) is rotated (clockwise about the z axis),
the coordinates of the transformed object and of the original object in the
same reference system are still related by (10) but with θ replaced by −θ
(see Fig. 2.1).
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Fig. 2.1. Equivalent rotations about the ẑ axis: (a) reference axes are rotated;
(b) physical system P is rotated

Example 2.2 Pure Lorentz Transformation

A pure Lorentz transformation (Lorentz boost) relates two reference frames
which differ only by a uniform relative motion of velocity v . When the motion
is in the positive x direction, the transformation is given by the matrix

aµ
ν =







coshω − sinhω 0 0
− sinhω coshω 0 0

0 0 1 0
0 0 0 1






, (2.14)

having determinant det a = 1 . It is a kind of rotation that mixes space
coordinates with the time parameter:

x′0 = cosh ω ( x0 − x1 tanhω) = γ ( x0 − vx1) ,

x′1 = cosh ω (−x0 tanhω + x1) = γ (−vx0 + x1) ,

x′2 = x2 ,

x′3 = x3 , (2.15)

where −∞ < ω <∞, and coshω = γ = 1/
√

1− v2, or tanhω = v .
If an active transformation is considered, where a particle of mass m at

rest is boosted to velocity v in the positive x direction, the coordinates of
the two particle states, all measured in the same, unchanged reference, are
related by

x′0 = x0 cosh ω + x1 sinhω ,

x′1 = x0 sinhω + x1 coshω ,

x′2 = x2 ,

x′3 = x3 . (2.16)
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It will be seen below that the energy and momentum form a four-vector
pµ = (E,p ) which transforms as xµ, so that the two vectors (m, 0, 0, 0) and
(E , p, 0, 0 ) are related by

E = m cosh ω ,

p = m sinhω , (2.17)

from which tanhω = p/E = v, coshω = 1/
√

1− v2 , and sinhω = v/
√

1− v2.
A particle of mass m at rest acquires through a Lorentz boost an energy
E = m cosh ω and momentum p = m sinhω . The parameter ω is called the
particle rapidity .

Example 2.3 Space Inversion

An inversion in space is defined by the matrix

aµ
ν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






. (2.18)

Note that in this case det a = −1 . The coordinates then transform as x′0 =
x0, x′1 = −x1, x′2 = −x2, and x′3 = −x3 .

The distinctive property of Lorentz transformations is that they leave
invariant the proper time interval dτ , defined by

dτ2 ≡ dt2 − dx2 = gµν dxµ dxν . (2.19)

The symbol gµν stands for a tensor, called the space-time metric, with com-
ponents g00 = 1, g11 = g22 = g33 = −1, and gµν = 0 for µ 6= ν , which can be
represented by a matrix,

gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






. (2.20)

It is numerically equal to its inverse, gµν , which carries upper indices.
In another Lorentz frame, the infinitesimal elements of the coordinates

are given, according to (8) with constant aµ
ν , by

dx′µ = aµ
ν dxν , (2.21)

and the proper time interval is given by

dτ ′2 = gµν dx′µ dx′ν = gµν a
µ

ρ a
ν

σ dxρ dxσ . (2.22)
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Invariance of proper time,

dτ ′2 = dτ2 , (2.23)

which expresses the experimental observation that the speed of light in the
vacuum is the same in all inertial frames, imposes a condition on the Lorentz
transformation matrix similar to the orthogonality relation for the space ro-
tation matrix,

gµν a
µ

λ a
ν

κ = gλκ . (2.24)

We limit ourselves to real Lorentz transformations. This is in fact the
case of physical transformations, which map real (coordinate) space into real
space; but complex extensions are also possible. From (24), two conditions
on aµ

ν may be written down:

(det a)2 = 1 ; (2.25)

a2
00 −

∑

i

a2
ii = 1 . (2.26)

They divide the real Lorentz transformations into four classes, namely,

(1) L↑
+ det a = +1 a00 ≥ 1 proper orthochronous (1) ,

(2) L↓
+ det a = +1 a00 ≤ −1 proper nonorthochronous (TP) ,

(3) L↑
− det a = −1 a00 ≥ 1 improper orthochronous (P) ,

(4) L↓
− det a = −1 a00 ≤ −1 improper nonorthochronous (T) .

These four classes are disconnected because neither a00 nor det a can be
changed continuously from a value less than 1 to a value greater than 1. But
a transformation in each class can be continuously deformed into any other
transformation of that class and in particular to the basic transformation
characteristic of the class, namely, 1, P , T , or TP , where P is space inversion
(parity) and T is time inversion.

Remarks. The set of all Lorentz transformations constitute an algebraic
structure, called the Lorentz group. It has the three key defining properties
of a group; namely,

(a) there exists an identity transformation (which effects no changes at
all);

(b) to each transformation there corresponds an inverse which is also a
member of the set;

(c) two transformations successively applied are equivalent to some ele-
ment of the set.

In particular, the subset of proper orthochronous Lorentz transformations
form a subgroup of the Lorentz group, called the special orthogonal group
SO(3,1), where the notation reflects the condition det a = +1 and the asym-
metry between space and time as manifest in the metric. In general, it is this
specific group one refers to when one speaks of ‘Lorentz invariance’, and it is
to this group that we will limit our discussion for the rest of the chapter.
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2.1.2 Tensor Algebra

Any vector that transforms as xµ according to (8) is said to be a contravariant

(Lorentz) vector,

V µ → V ′µ = aµ
ν V

ν . (2.27)

A covariant vector Uµ is one that transforms as

Uµ → U ′
µ = aµ

ν Uν , (2.28)

that is, with the matrix inverse of aµ
ν :

aµ
ν ≡ (a−1)ν

µ = gµλ g
νκ aλ

κ . (2.29)

From these definitions and (24) follow several useful relations. First, to each
contravariant vector corresponds a covariant vector, and inversely,

Vµ ≡ gµν V
ν , Uµ ≡ gµν Uν . (2.30)

Note in particular that the sign of the space components changes when indices
change positions, reflecting the presence of both signs in gµν :

V0 = +V 0, V1 = −V 1, V2 = −V 2, V3 = −V 3 . (2.31)

Moreover, the scalar product of a covariant vector and a contravariant vector

UνV
ν = U0V 0 −U · V (2.32)

is a Lorentz-invariant scalar:

U ′
µV

′µ = aµ
λ aµ

ν UλV
ν = UνV

ν. (2.33)

There exist objects, neither vectors nor scalars, that also transform in a
well-defined though complicated manner and that may carry several upper
or lower indices. They are called (Lorentz) tensors. For example, a rank-3
mixed tensor transforms according to

Tλ
µν → T ′λ

µν = aλ
α T

α
βγ aµ

β aν
γ . (2.34)

This rule can be readily extended to tensors of any rank.
The four-gradient, ∂µ ≡ ∂/∂xµ, is a covariant vector:

∂

∂xµ
→ ∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
, (2.35)
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where ∂xν/∂x′µ = aµ
ν , from (28). One can similarly prove that ∂µ ≡ ∂/∂xµ

is a contravariant vector. It is important to note the sign difference in the
following two formulas:

∂µ ≡
∂

∂xµ
=

(

∂

∂t
,∇
)

, ∂µ ≡ ∂

∂xµ
=

(

∂

∂t
,−∇

)

. (2.36)

It follows, for example, that the divergence of an arbitrary contravariant
vector, ∂V µ/∂xµ, is invariant, as are also the d’Alembertian = ∂µ∂µ and
any operator of the form V µ∂µ:

V µ∂µ = V 0 ∂

∂t
+ V · ∇ , (2.37)

∂µ∂µ =
∂2

∂t2
−∇2 . (2.38)

Another example of physical interest is the energy-momentum vector of
a particle with mass m, defined by

pµ ≡ mdxµ

dτ
. (2.39)

It is evidently a vector because dxµ is one whilem and dτ are both invariants.
The particle energy and momentum can then be identified with the time and
space components of pµ:

p0 = E = mγ , (2.40)

p = mγv , (2.41)

where

v ≡ dx

dt
, γ ≡ dt

dτ
= (1− v2)−

1/2 . (2.42)

If the total energy-momentum is conserved in a reaction i → f in some
reference frame (i.e. P µ

i = P µ
f , where P µ

i and P µ
f denote the total energy-

momentum in the initial and final states), it is also conserved in any other
frame related to the first by a Lorentz transformation (i.e. P ′µ

i = P ′µ
f ). This

simple yet significant result follows directly from (8) because a four-vector
that vanishes in a given frame necessarily vanishes in any other Lorentz frame.

2.1.3 Tensor Fields

Consider two observers O and O′ moving in two different inertial reference
frames related by a Lorentz transformation. If observer O describes a field by
a certain function ϕ(x) = ϕ(t,x) using the coordinates of her own frame, then
observer O′ will describe the same field by another function ϕ′(x′) = ϕ′(t′,x′)
in terms of the transformed coordinates x′µ = aµ

νx
ν . The question is, how
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are ϕ(x) and ϕ′(x′) related? A theory consistent with relativistic princi-
ples can only contain fields that have well-defined transformation properties.
They include

(a) scalar fields, that remain invariant in every Lorentz transformation:

φ′(x′) = φ(x) ;

(b) vector fields, such as the electromagnetic field; a Lorentz transforma-
tion acts on both the field and its arguments such that

A′µ(x′) = aµ
ν A

ν(x) ;

(c) tensor fields, such as the gravitational field or the electromagnetic field
tensor, for which the transformation rule is

F ′µν(x′) = aµ
ρ a

ν
σ F

ρσ(x) .

One characterizes these rules by saying that φ, Aµ, and F µν belong to
different representations of the Lorentz group. There also exist many other
representations that cannot be constructed in such a simple manner. For
example, the spinor representation, to which belong fields of spin-1/2 particles
in four-dimensional space-time, also transforms with a 4 × 4 matrix with
elements given by nontrivial functions of aµ

ν . We will examine this case in
the next chapter. The rest of this chapter is devoted to the study of the
two simplest representations of the Lorentz group, the scalar and the vector
fields.

2.2 Scalar Fields

The observed mesons π, K, and η, and the postulated Higgs bosons of the
standard model are all spin-0 particles, described by scalar fields generically
represented by the symbol φ . Suppose an observer O constructs in her frame
the coordinates xµ and describes a certain scalar field by the space-time
function φ(x) and the state vector of the observed physical system by ΦA .
Suppose also a second observer O′, with similarly constructed coordinates
x′µ, describes the same field by φ′(x′) and the same physical state by the
vector Φ′

A′ . How are the corresponding objects in the two frames related?
What observables do such relations imply?

2.2.1 Space-time Translation of a Scalar Field

Let us illustrate the way symmetry arguments are applied to fields by the
simple example of space-time translation, which is defined by

xµ → x′µ = xµ − aµ , (2.43)

where aµ is the constant displacement parameter. As translation is a contin-
uous transformation and can be constructed by a succession of small trans-
lations, it suffices to consider an infinitesimal transformation,

xµ → x′µ = xµ − δaµ , (2.44)
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where δaµ is a very small constant vector. If the total variation of the field
is defined as

δφ(x) = φ′(x′)− φ(x) , (2.45)

then δφ(x) = 0, since φ(x) is by definition a scalar, invariant field. The
question then is, if O′ is given φ(x), how will he obtain from this information
the field in his own frame but written in terms of x? What he wants is an
expression of the form

φ′(x) = φ(x) + δ0φ(x) , (2.46)

where δ0φ defines the variation of the field alone, keeping the argument fixed.
Setting δφ = 0 in (45) and calling x′ simply x, observer O′ will obtain by
expanding φ(x+ δa) up to terms linear in δaµ

φ′(x) = φ(xµ + δaµ) ≈ (1 + δaµ∂µ)φ(x) . (2.47)

Therefore,

δ0φ = iδaµ(−i∂µφ(x)) , (2.48)

where −i∂µ induces an infinitesimal variation of the field and is called, for
this reason, the generator of infinitesimal translations. A finite translation is
obtained by replication,

φ′(x) = limitn→∞

(

1 +
aµ

n
∂µ

)n

φ(x) = exp(aµ∂µ)φ(x) . (2.49)

The operator U(a) ≡ exp(aµ∂µ) is unitary: by Hermitian conjugation one
has ∂†µ = −∂µ, hence U †(a) = exp(−aµ∂µ) = U−1(a) = U(−a) , which can

also be written as U †U = 1. The set of all U(a) form a group, the translation

group. This group is Abelian, meaning that the result of two successive
translations does not depend on the order in which they are applied:

U(a)U(a′) = U(a′)U(a) . (2.50)

This property is equivalent to commutativity of the generators,

∂µ∂ν − ∂ν∂µ ≡ [∂µ, ∂ν] = 0 , (2.51)

and {∂µ} is said to form an Abelian algebra.
At this point it is useful to introduce a Hermitian operator, Pµ = P †

µ,
realized in x space by −i∂µ, and interpreted, just as in quantum mechanics,
as the total energy-momentum operator of the system. The transformation
operator, similarly abstracted, is then given by U(a) = exp(iaµPµ) . Two
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vectors in the Hilbert space constructed respectively by the two observers to
describe the same physical state are then related by

Φ′
A′ = U(a)ΦA , (2.52)

and the operators representing the same observable are similarly related:

X′ = U(a)XU−1(a) . (2.53)

These transformation rules are motivated by the general physical condition
that a scalar product in the Hilbert space, interpreted as usual as a probability
amplitude, remains unchanged in any symmetry transformation,

〈Φ′
B′ |X′ |Φ′

A′〉 = 〈ΦB |X |ΦA〉 . (2.54)

Now, X is said to be invariant to the transformation if

X′ = X or UX = XU ; (2.55)

that is, it commutes with all the generators of the transformation group,

[X, Pµ] = 0 , µ = 0, 1, 2, 3 . (2.56)

In particular, the physical system described by a HamiltonianH is invariant
to translations if [H, Pµ] = 0, for µ = 0, 1, 2, 3 . Considered as a Heisen-
berg operator, Pµ is a constant of the motion; that is, the total energy and
momentum of the system are conserved. This conservation law, which is a
direct consequence of the invariance under constant displacements of space-
time coordinates, is valid whenever cosmological effects are negligible. The
energy-momentum conservation law turns out to be among the most useful
tools in particle physics.

Remarks. (a) Relation (54) can be understood as follows. Let a, b be
complex numbers, and |ϕi〉 arbitrary vectors. An operator U is said to be
unitary if it is linear ,

U(a |ϕ1〉+ b |ϕ2〉) = aU |ϕ1〉+ b U |ϕ2〉 , (2.57)

and preserves the norm of every vector

〈Uϕ |Uϕ〉 = 〈ϕ |ϕ 〉 . (2.58)

It immediately follows that the scalar product is also preserved:

〈Uϕ1 |Uϕ2 〉 = 〈ϕ1 |ϕ2 〉 . (2.59)
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(b) In quantum mechanics, a physical system is most often described by a
wave function which evolves according to the Schrödinger equation which,
for a time-independent Hamiltonian, can be formally solved to yield

φ(t,x) = e−iHtφ(0,x) . (2.60)

The matrix element of an arbitrary operator A (assumed for simplicity to be
time independent) may be written as

∫

d3x φ∗
f(t,x)Aφi(t,x) =

∫

d3x φ∗
f(0,x)A(t)φi(0,x) . (2.61)

The time-dependent operator thus defined,

A(t) ≡ eiHtA e−iHt , (2.62)

satisfies what is known as the Heisenberg equation:

i
dA(t)

dt
= [A(t), H ] . (2.63)

Thus, a quantum system may be described either by time-dependent wave
functions of the Schrödinger representation or, alternatively, by fixed state
vectors and time-varying operators, like A(t) , of the Heisenberg representa-
tion. When [A(t), H ] = 0, the operator A(t) does not depend on time and,
according to (61), its expectation value in an arbitrary state is constant. We
shall return to this subject in Chap. 4 .

2.2.2 Lorentz Transformation of a Scalar Field

We proceed now to the study of the Lorentz transformation properties of a
scalar field. For this purpose, it suffices to consider infinitesimal transforma-
tions, defined by

xµ → x′µ = aµ
ν x

ν ≈ (δµ
ν + εµν)xν , (2.64)

where εµν = gµλε
λ

ν are all very small constants. The basic condition (24) on
the transformation matrix tells us that εµν is antisymmetric: εµν = −ενµ.
And so in the examples considered above the infinitesimal rotation (ẑ, δθ) is
defined by the nonvanishing matrix elements ε12 = −ε21 = −δθ, while the
Lorentz boost (x̂, δω) is defined by the nonzero elements ε01 = −ε10 = −δω .

Now, from the defining property of a scalar field, namely

φ′(x′) = φ(x) = φ(a−1x′) , (2.65)

one obtains to the first-order terms in the variation

φ′(x) = φ(a−1x) = φ(xµ − εµν x
ν)

≈ (1 − εµν x
ν∂µ)φ(x) . (2.66)
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The intrinsic variations of the field immediately follow:

δ0φ = φ′(x)− φ(x)

= 1
2ε

µν (xµ∂ν − xν∂µ)φ(x) ≡ − i
2ε

µν Lµν φ(x) . (2.67)

This result shows that the infinitesimal Lorentz transformations of scalar
fields are essentially described by the operators

Lµν = i(xµ∂ν − xν∂µ) , (2.68)

called the generators of infinitesimal transformations. They are Hermitian,
L†

µν = Lµν , antisymmetric, Lµν = −Lνµ, and form a complete set in the
sense that

[Lµν, Lρσ ] = −igµρ Lνσ − igνσ Lµρ + igµσ Lνρ + igνρLµσ . (2.69)

The lack in commutativity of these generators reflects the fact that the order
of successive applications of two arbitrary Lorentz transformations is impor-
tant. The result of the application of a Lorentz boost followed by a rotation,
for example, is not the same as that obtained when the order of applica-
tions is reversed. Hence the Lorentz group and the corresponding algebra of
generators are non-Abelian.

An observable X is said to be invariant to the Lorentz group when it
commutes with all generators Lµν . In particular, a physical system is said
to be invariant if the Hamiltonian that describes it satisfies

[H,Lµν] = 0 for all µ, ν . (2.70)

Space rotations are generated by the operators

L1 ≡ L23 = −i

(

y
∂

∂z
− z ∂

∂y

)

,

L2 ≡ L31 = −i

(

z
∂

∂x
− x ∂

∂z

)

,

L3 ≡ L12 = −i

(

x
∂

∂y
− y ∂

∂x

)

, (2.71)

which represent the total angular momentum of a scalar field. They obey the
familiar commutation relations

[Li, Lj] = iεijkLk , (2.72)

where εijk is the completely antisymmetric Levi-Cività tensor, such that
ε123 = +1 . We learn from these results that the orbital angular momentum
is the whole contribution to the total angular momentum. For a translational
invariant field,

φ(x) = eixµPµ φ(0) = eiP0t−iP·x φ(0) .

In its rest frame, where P = 0, the field is independent of space coordinates
and the total angular momentum of a particle at rest described by φ vanishes,
Liφ = 0 for i = 1, 2, 3. The intrinsic spin of the scalar field is zero, s = 0 .
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2.3 Vector Fields

A vector fieldAα(x) carries a Lorentz index and is defined by its characteristic
Lorentz transformation property

A′α(x′) = aα
β A

β(x) = aα
β A

β
(

a−1x′
)

. (2.73)

For an infinitesimal transformation, in which aα
β = δα

β + εαβ, we expand
the right-hand side of the equation, keeping terms up to the first order in the
transformation parameters, to get

A′α(x) = aα
β A

β(aρ
σ xσ) = (δα

β + εαβ)
[

Aβ(x)− εµν x
ν ∂µA

β(x)
]

=
[

δα
β − i

2 ε
µν(Σµν)α

β

] [

Aβ(x)− i
2 ε

µν Lµν A
β(x)

]

= Aα(x)− i
2 ε

µν (Lµν + Σµν)Aα(x) . (2.74)

Here we have introduced the matrix operator

(Σµν)α
β = i(δα

µ gνβ − δα
ν gβµ ) (2.75)

and used the simplified notation Σµν A
α = (Σµν )α

β A
β. This operator Σ

acts on the vector label, i.e. generates the variations stemming from the
vectorial character of the field, while Lµν , given by the same expression as in
(68), generates rather the variations due to the functional field dependence.
The antisymmetric tensor operator

Jµν = Lµν + Σµν (2.76)

is the full generator of infinitesimal Lorentz transformations of vector fields:

δ0A
α(x) = − i

2 ε
µν Jµν A

α(x) . (2.77)

The pure space components, Jij for i, j = 1, 2, 3, act nontrivially on the
space field components to generate space rotations and represent the total
angular momentum of the field. Let us denote the three independent space
components by

J i ≡ Li + Si ≡ 1
2 ε

ijk Jjk (2.78)

with
(Li)a

b = i
2 ε

ijk (xj∂k − xk∂j) δ
a
b , (2.79)

(Si)a
b = −iεiab . (2.80)

It can be checked that Li, Si and J i satisfy the usual commutation relations
of the algebra of angular momenta. For example,

[L1, L2] = iL3, [S1, S2] = iS3, [J1, J2] = iJ3 ; (2.81)

together with relations obtained by permuting indices, and [Li, Sj] = 0 for
all i, j .

The square of the operator S is

(S 2)a
b =

∑

k,c

(Sk)a
c (Sk)c

b =
∑

k,c

εkca εkcb = 2 δa
b , (2.82)

which simply shows that S
2 = s(s+ 1) = 1(1 + 1), or that the intrinsic spin

of a vector field is equal to s = 1 .
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2.4 The Klein–Gordon Equation

Let us return now to the relativistic generalizations of the equation of motion
for a free particle which we started to consider in the introduction. We shall
focus for now on the first of the two possibilities,

a
∂2

∂t2
φ(t,x) =

(

3
∑

i=1

bi
∂2

∂xi2
+m2

)

φ(t,x) . (2.83)

To be consistent with the relativistic energy-momentum relation (6), the
coefficients must have the values a = bi = −1 for i = 1, 2, 3 . From this
choice follows the Klein–Gordon equation for a free particle:

(

∂2

∂t2
−∇2 +m2

)

φ(x) = 0 , (2.84)

which in relativistic notations reads

( +m2)φ(x) = 0 . (2.85)

As the operator = ∂µ∂µ, the complex function φ, and the mass parameter
m are all Lorentz scalars, the equation (85) is manifestly invariant in the
Lorentz group, retaining the same form in any Lorentz frame.

2.4.1 Free-Particle Solutions

For any given momentum p, (85) admits a solution

φ(x) = fp(x)e−iWt (2.86)

provided W 2 = p2 +m2. The simplest is a plane wave, fp(x) = C exp(ip·x),
with normalization constant C . For a given momentum vector p, two energy
values are allowed; one, W = E =

√

p2 +m2 , associated with the positive-

energy solution

φ(+)(x) = fpe−iEt ; (2.87)

and the other, W = −E = −
√

p2 +m2, with the negative-energy solution

φ(−)(x) = fpeiEt . (2.88)

Note that now, unlike in the nonrelativistic case, the particle energy may
take all possible values, positive as well as negative, and the energy spectrum
extends from −∞ to +∞ just like the momentum. Thus, the symmetry
between energy and momentum is restored.
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2.4.2 Particle Probability

To understand the physical meaning of the new, negative-energy solution
(88), it is useful to examine its implications on the particle probability. It is
recalled that in nonrelativistic quantum mechanics the probability density is
defined by φ∗φ and is related to a current density via a continuity equation.
But now the presence of a second-order time derivative in (85) will force us to
reconsider the definition of the probability density. To find out the required
changes, let us look at the following equations:

φ∗(∂µ∂µ +m2)φ = 0 ,

φ(∂µ∂µ +m2)φ∗ = 0 .

Taking the difference of the two equations, we obtain a local conservation
equation

∂µ j
µ = 0 , (2.89)

for the four-current

jµ ≡ i[φ∗∂µφ− (∂µφ∗)φ ] , (2.90)

which has the components

j0 = i

(

φ∗ ∂φ

∂t
− ∂φ∗

∂t
φ

)

≡ iφ∗
↔
∂

∂t
φ , (2.91)

j = −i [φ∗∇φ− (∇φ∗)φ] ≡ −iφ∗ ↔
∇ φ . (2.92)

Here, we have used the notation

↔
∂

∂t
≡
−→
∂

∂t
−
←−
∂

∂t
,

↔
∇≡ −→∇ −←−∇ .

Now, in the nonrelativistic limit E ≈ m, the positive-energy solution yields
j0 ≈ 2m|fp|2, which is indeed proportional to the expected nonrelativistic
probability density. However, as we presently see, this naive interpretation
is not justified. In fact, from (87)–(88) and (91)–(92), one deduces that

j0 = ±2E |fp|2 , j = 2p |fp|2 , (2.93)

where ± refer respectively to φ(+) and φ(−) . It follows that the particle
probability, given by the integral

∫

d3x j0 up to a constant, is positive for
the positive-energy solution, but negative for the negative-energy solution –
a rather unsatisfactory result. To avoid this awkward situation, could one
simply omit the embarrassing negative-energy solution? No, because the
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wave functions φ = fp exp(−iWt), with W > 0, do not by themselves form a
complete set, and a description of a physical system in an arbitrary state in
terms of these functions alone is not possible. Both positive- and negative-
energy solutions are indispensable. Thus, either the Klein–Gordon equation
should be abandoned, as it had effectively been for a time following 1926, or
the interpretation of j0 as a probability density should be given up.

In 1934, six years after P. A. M. Dirac’s success in discovering another
relativistic equation which now carries his name and in giving the correct
physical interpretation of its solutions, the interest for the Klein–Gordon
equation was revived by W. Pauli and V. F. Weisskopf’s original idea that
jν should not be interpreted as a current of probability density, as nonrela-
tivistic quantum mechanics would suggest, but rather as a current of charge

density. The reinterpretation is crucial. The sign change of j0 that occurs
when φ(+) is replaced by φ(−) would come simply from the fact that the two
solutions describe states of electric charges of opposite signs. In the light
of this suggestion, let us again examine the two solutions (87)–(88). The
function

φ(+)
p (x) = Cpei(p·x−Et) = Cpe−ip·x (2.94)

describes a state of a particle moving in the normal time direction, whereas

φ(−)
p (x) = Cpei[p·x−E(−t)] (2.95)

can be viewed as a state of a particle moving in the reverse time direction.
Now, if the charge density j0 differs in sign for the two states because of
their opposite charges, the current density j must, for the very same reason,
carry opposite signs for the two cases; in other words, one ought to have
j = ±2p |f±p|2, which means that the momentum direction in the negative-
energy solution should be reversed:

φ
(−)
−p (x) = Cpei(−p·x+Et) = Cpeip·x . (2.96)

The interpretation of φ(−) as a state of negative energy propagating in
the reverse time direction is certainly counterintuitive and rather difficult
to visualize. It would be conceptually clearer to replace it with the picture
intuitively more familiar to our senses of a state of antiparticle of positive

energy propagating in the normal time direction. By antiparticle, we mean a
charge conjugate state to the positive-energy state, with the same mass, but
with opposite charge and reversed momentum direction. In this interpreta-
tion, the antiparticle is treated as any other particle, with the appropriate
quantum numbers. No more negative energies, no more reversed time arrow.
This interpretation will become even more transparent when the wave func-
tion itself is quantized, that is, made into a quantum operator that depends
on space-time parameters in a procedure called the second quantization.
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The eigensolutions of the Klein–Gordon equation {φ(+)
p } and {φ(−)

−p } form

a complete set. With normalization Cp = 1/
√

(2π)32Ep , they satisfy the
orthonormality relations

i

∫

d3x φ
(+)∗
p′

↔
∂

∂t
φ(−)

p = 0 ,

i

∫

d3x φ
(+)∗
p′

↔
∂

∂t
φ(+)

p = δ(p′ − p) ,

i

∫

d3x φ
(−)∗
p′

↔
∂

∂t
φ(−)

p = −δ(p′ − p) . (2.97)

It is important to note the sign on the right-hand side of the last equation.
An arbitrary wave function of the particle can then be written in this basis:

φ(x) =
∑

p

[

apφ
(+)
p (x) + b∗pφ

(−)
−p (x)

]

, (2.98)

where ap and b∗p are the complex amplitudes of the eigenmodes of φ . We
have used here, as we often will in the following, the shorthand notation
∑

p =
∫

d3p .

2.4.3 Second Quantization

In the formalism of quantum field theories, the function φ(x) becomes a
quantum operator on the Hilbert space of state vectors. The algebra of this
field operator and its conjugate momentum density operator is defined by a
set of quantization rules. The operator φ(x) still obeys the same dynamic
equation as the classical field, but the coefficients ap and bp in the series (98)
now become quantum operators. Using the same notations as for the classical
field (98), we have the following expressions for the scalar field operator and
its Hermitian adjoint:

φ(x) =
∑

p

[

apφ
(+)
p (x) + b†pφ

(−)
−p (x)

]

,

φ†(x) =
∑

p

[

a†pφ
(+)∗
p (x) + bpφ

(−)∗
−p (x)

]

. (2.99)

We will show in what follows that
ap destroys a particle of momentum p and positive (by convention) unit
charge;
a†p creates a particle of momentum p and positive unit charge;
bp destroys an antiparticle of momentum p and negative unit charge;
b†p creates a particle of momentum p and negative unit charge.

Thus, the field operator φ reduces the total charge of the system by one
unit, either by destroying a (say, positive) charge with the operator ap or



2.4 The Klein–Gordon Equation 35

by creating an antiparticle of opposite (negative) charge with b†p . Similarly,

the operator φ† increases the total charge by one unit, either by creating a
particle with a†p or by destroying an antiparticle with bp . In general, the
field operator φ can operate on a state vector containing an arbitrary num-
ber of particles and antiparticles, and so the Klein–Gordon equation which
determines the evolution of the field φ is also an equation that governs the
dynamics of the whole system of particles and antiparticles. A quantum field
theory is, for this reason, necessarily a many-particle theory. Evidently, other
more complex processes are possible. For example, the quadratic operator
φ†(x)φ(x) represents any one of several charge-conserving processes: the cre-
ation and the annihilation of a particle, or of an antiparticle, at space-time
point x , or the creation or destruction of a particle–antiparticle pair. In any
of these events, there are no changes in the net charge and the total charge
of the system remains unchanged.

Finally, if the field is Hermitian, φ = φ† , then ap = bp , which means that
the particle is identical to its antiparticle.

2.4.4 Operator Algebra

In this section, we give a physical motivation for the quantization rules of the
scalar field operators. For this purpose, let us introduce (see Sect. 2.6 below)
the Hamiltonian operator for a complex scalar field φ,

H =

∫

d3x

[

∂φ†

∂t

∂φ

∂t
+ ∂iφ†∂iφ + m2φ†φ

]

. (2.100)

An integration by parts of the second term on the right-hand side leads, with
the help of the Klein–Gordon equation (which φ obeys), to

H = −
∫

d3x φ†
↔
∂

∂t

(

∂φ

∂t

)

. (2.101)

A surface term has been dropped, which is justified by assuming φ to vanish
on the integration surfaces. Now, using the expansion series (99) and the
orthonormality relations (97), one can simplify the expression as follows,
carefully keeping the relative order of all operators,

H =

∫

d3x
∑

p′

[

a†
p′φ

(+)∗
p′ (x) + bp′φ

(−)∗
−p′ (x)

]

× i

↔
∂

∂t

∑

p

Ep

[

apφ
(+)
p (x) − b†pφ

(−)
−p (x)

]

=
∑

p

Ep (a†pap + bpb
†
p) . (2.102)
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The first term on the right-hand side, Epa
†
pap ≡ EpNp , can be interpreted

as the energy density of the particle, and Np = a†pap , as the particle number

operator. However, in the second term the order of the factors b and b† must
be reversed before their product can be similarly interpreted as an antiparticle
number operator, Np = b†pbp .

The creation and annihilation operators and observables, such as H and
N , operate on an abstract space characterized by a vacuum state |0〉 defined
by

ap |0〉 = bp |0〉 = 0 , 〈0 |0 〉 = 1 . (2.103)

The basis states of that space, called Fock space, are constructed by applying
all positive powers of a† and b† on the vacuum, and Fock states are linear
combinations of the basis states with definite numbers of excitation modes. In
particular, a† |0〉 and b† |0〉 are one-particle states conventionally normalized:
〈

0
∣

∣ apa
†
p

∣

∣0
〉

= 1 ,
〈

0
∣

∣ bpb
†
p

∣

∣ 0
〉

= 1 . (2.104)

Therefore, when we reverse the order of b and b† in (102), we may write

bpb
†
p = 1± b†pbp ,

and obtain the expression for H in the form

H =
∑

p

Ep (a†pap ± b†pbp) +
∑

p

Ep . (2.105)

The last term on the right-hand side is a c-number quantity which can be
interpreted as the (infinite) vacuum energy. In general, it may be dropped
(because it is not observable) by redefining the energy of the system relatively
to the vacuum, such that the rescaled vacuum energy vanishes:

H → H −
∑

p

Ep =
∑

p

Ep (a†pap ± b†pbp) . (2.106)

Clearly, the Hamiltonian without the vacuum energy is non-negative, pro-
vided the contributions from antiparticles are non-negative, that is, provided
that one adopts the + sign, rather than the − sign, in the above expressions.
This leads to

H =
∑

p

Ep (a†pap + b†pbp) =
∑

p

Ep (Np +N p) . (2.107)

Thus, the condition that the total energy of the system be non-negative
implies that the operators a and b obey commutation relations. This is con-
sistent with a natural generalization of the quantum rules of coordinates and
momenta in a discrete system,

[qi, pj] = iδij, [qi, qj] = [pi, pj] = 0 ,
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to the quantization rules of a scalar field and its conjugate momentum density:

[φ(t,x), π(t, y)] = iδ(3)(x− y) ,

[φ(t,x), φ(t, y)] = [π(t,x), π(t, y)] = 0 , (2.108)

where π ≡ (∂φ†/∂t). From this postulate, follow the commutation relations

[ap′ , a†p] = δ(p′ − p) ; [ap′ , ap] = 0 ; [ap′ , bp] = 0 ;

[bp′ , b†p] = δ(p′ − p) ; [bp′ , bp] = 0 ; [ap′ , b†p] = 0 . (2.109)

2.4.5 Physical Significance of the Fock Operators

The charge operator, which is given by

Q = i

∫

d3x j0(x) = i

∫

d3x φ†(x)

↔
∂

∂t
φ(x) , (2.110)

may be rewritten in the following form by retracing the same steps as in the
calculation of H ,

Q =

∫

d3x
∑

p′

[

a†p′φ
(+)∗
p′ (x) + bp′φ

(−)∗
−p′ (x)

]

× i

↔
∂

∂t

∑

p

[

apφ
(+)
p (x) + b†pφ

(−)
−p (x)

]

=
∑

p

(a†pap − bpb†p) . (2.111)

Using the commutation relations (109) and dropping the vacuum terms yields

Q =
∑

p

(a†pap − b†pbp) =
∑

p

(Np −Np) . (2.112)

Since [Np,Np′ ] = 0 , operators H and Q commute, which simply means that
charge is conserved. Of course, when a particle is identical to its antiparticle,
i.e. φ† = φ, its charge operator identically vanishes, Q = 0 . A Hermitian
field therefore represents a neutral particle.

As already mentioned, a, b, a†, b†, and the operators H and Q act on
Fock states. For example, the Fock state of one particle of momentum p is

|p〉 =
√

(2π)32Ep a
†
p |0〉 = C−1

p a†p |0〉 , (2.113)

normalized such that

〈p′ |p 〉 = (2π)3 2Ep δ
3(p′ − p) . (2.114)
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With the help of (107), (109), and (112), one shows that it is an eigenstate
of energy Ep:

H |p〉 = C−1
p Ha†p |0〉 = C−1

p [H, a†p] |0〉
= Ep |p〉 ; (2.115)

and of one unit of charge:

Q |p〉 = C−1
p Qa†p |0〉 = C−1

p [Q, a†p] |0〉
= |p〉 . (2.116)

Thus, the operator a†p creates a discrete excitation of positive unit charge,

of energy Ep related to momentum by the usual relation Ep =
√

p2 +m2.
One may call such a state a particle. When applied on an arbitrary state
describing the system, a†p adds a particle to the system, increasing its energy
by Ep and its charge by a unit of charge.

A similar analysis can be done for a one-antiparticle state, defined by

|p̄〉 =
√

(2π)32Ep b
†
p |0〉 = C−1

p b†p |0〉 . (2.117)

It will then be seen that b†p adds an antiparticle to the system, thus increasing
its energy by Ep and reducing its charge by a unit of charge:

[H, b†p] = Ep b
†
p , [Q, b†p] = −b†p .

What is the connection between the classical wave function and the quan-
tum field operators φ, φ† ? For a plane-wave free-particle state (99), it is given
by the relation

〈0 |φ(x) | p〉 = e−ip·x . (2.118)

The matrix element 〈0 |φ(x) | p〉, which represents the amplitude for the an-
nihilation at point x of a particle carrying momentum p, is thus shown, with
the help of (109) and (113), to be identical to the plane-wave function of a
free particle having momentum p . Hence the following amplitudes describe
the initial or final states of a particle or antiparticle:

< 0|φ(x)|p > = e−ip·x →−• annihilation of a particle,

< p|φ†(x)|0 > = eip·x •→− creation of a particle,

< p̄|φ(x)|0 > = eip·x •−← creation of an antiparticle,

< 0|φ†(x)|p̄ > = e−ip·x −←• annihilation of an antiparticle.
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2.5 Quantized Vector Fields

It was already shown that a vector field has intrinsic spin equal to 1. Quan-
tum mechanics tells us that a spin-1 particle generally has three spinorial
(polarization) states, eigenstates of the spin projection along some quantiza-
tion axis, normally chosen to be the z axis. It is exactly the case of particles
with nonvanishing masses, such as the vector mesons (ρ, φ, J/ψ) or the weak
interaction bosons (W±, Z). However, the electromagnetic field does not have
this property; it is described by a four-vector field which has just two inde-
pendent components. The particle associated with it, the photon, is massless
and has only two polarization states. We will describe in this section the
nature of the vector fields, the differences between the two cases, and the
role of gauge invariance and of relativistic invariance.

2.5.1 Massive Vector Fields

For a massive vector field in the absence of interactions, it is natural to
assume in a relativistic theory that each of the four components of the field
Aµ satisfies the Klein–Gordon equation

(∂ν∂
ν +m2)Aµ = 0 , (2.119)

subject to the condition

∂νA
ν = 0 . (2.120)

This manifestly Lorentz-invariant condition is needed to reduce the number
of independent equations from four to three, which is precisely the number
of the independent degrees of freedom of a spin-1 particle.

For a plane-wave solution

Aµ(x) ≈ aµ(k) e−ik·x , (2.121)

the equation (119) implies a constraint on the four-momentum k :

k2 ≡ (k0)2 − k
2 = m2 , or

±k0 = Ek =
√

k2 +m2, (2.122)

which shows that m is the mass of the particle associated with the field.
On the other hand, (120) imposes a restriction on the vector aµ(k) which
describes the polarization states of the field:

kµa
µ(k) = 0 . (2.123)

It is not difficult to construct a set of three independent vectors satisfying this
condition. For example, placing the z axis in the direction of the momentum
k, so that kµ = (Ek, 0, 0, |k |), a possible choice of polarization vectors is

eµ(k, 1) = (0, 1, 0, 0) ,

eµ(k, 2) = (0, 0, 1, 0) ,

eµ(k, 3) =
1

m
(|k |, 0, 0, Ek) . (2.124)
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In this choice, the basis vectors are real , spacelike, normalized to −1, and
reduce to x̂, ŷ, and ẑ when the particle comes to rest. Together with kµ,
they form a complete set in the sense that

3
∑

λ=1

eµ(k, λ) eν(k, λ) = −gµν +
kµkν

m2
, (2.125)

where kµ ≡ (
√

k2 +m2, k). The vectors eµ(k, 1) and eµ(k, 2) are orthogonal
to kµ as well as to k, and describe the transverse polarizations of the field,
while the longitudinal polarization vector eµ(k, 3) has its space components
parallel to k and its time component determined by (123). Of course, other
choices are possible, leading generally to complex polarization vectors, which
may be more convenient for some purposes.

The expansion series of the massive vector field in terms of plane waves
and of complex polarization basis vectors reads

Aµ(x) =
∑

k

3
∑

λ=1

1
√

(2π)32Ek

× [eµ(k, λ) a(k, λ) e−ik·x + eµ ∗(k, λ) b†(k, λ) eik·x ] , (2.126)

where Ek and eµ(k, λ) satisfy (122)–(123). Considered as a quantum field,
Aµ is a superposition of eigenmodes of particles and antiparticles of momen-
tum kν and polarization λ . These modes are described by the creation and
annihilation operators a†, b† and a, b, which obey the commutation relations

[a(k′, λ′), a(k, λ)] = [b(k′, λ′), b(k, λ)] = 0 ,

[a(k′, λ′), b(k, λ)] = [a†(k′, λ′), b†(k, λ)] = 0 ,

[a(k′, λ′), a†(k, λ)] = δλ′λ δ(k
′ − k) ,

[b(k′, λ′), b†(k, λ)] = δλ′λ δ(k
′ − k) . (2.127)

2.5.2 The Maxwell Equations

A classical electromagnetic field is described by two three-vectors, the electric
field E and the magnetic field B, which obey a set of coupled differential
equations discovered by James Clerk Maxwell in 1864. Equivalently, it can
be represented by a four-vector that satisfies a Klein–Gordon equation for a
particle of vanishing mass.

The Maxwell equations for a field in the presence of an electrical source
ρ and a current j are

∇ ·E = ρ ,

∇×B− ∂E

∂t
= j ,

∇ ·B = 0 ,

∇×E +
∂B

∂t
= 0 . (2.128)
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They are written in the rationalized Heaviside–Lorentz units, with c = h̄ = 1,
so that the fine structure constant is defined by α = e2/4π ≈ 1/137 .

Experience tells us that electric and magnetic phenomena are not in-
dependent, except in static situations, and that a certain symmetry exists
between E and B in spite of the absence of observable magnetic charges and
currents. It is thus quite possible that these apparently distinct forces are
actually different aspects of the same kind of interaction. Therefore, it would
be of advantage to combine the components of E and B into a single object,
which must be an antisymmetric tensor of second rank as it has the correct
number of (six) independent components,

F i0 = −F 0i = Ei, F ij = −εijkBk ,

or

F µν =







0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0






. (2.129)

In terms of this field tensor, the two nonhomogeneous equations, which are
driven by the charge and current densities, take on a really simple form

∂µ F
µν = jν , (2.130)

where jµ = (ρ, j) . The current conservation is contained in this equation and
is a direct consequence of the antisymmetry of F µν and of the commutativity
of ∂µ and ∂ν :

∂νj
ν = 0 . (2.131)

Now, if a vector field Aµ(x) is defined through

F µν = ∂µAν − ∂νAµ , (2.132)

the homogeneous Maxwell equations are automatically satisfied because

∂λFµν + ∂µFνλ + ∂νFλµ = 0 (2.133)

is an algebraic identity when considered in terms of Aµ , and reproduces the
two homogeneous Maxwell equations when considered in terms of Fµν with
indices (λ, µ, ν) = (i, j, k) and (0, i, j) . Given Aµ , the fields E and B may
be calculated from (132):

E = −∂A
∂t
−∇A0 ,

B = ∇×A . (2.134)

To sum up, the Maxwell equations can be seen as the dynamic equations
for the vector field Aµ(x):

F µν(x) = ∂µAν(x) − ∂νAµ(x) ,

∂µ F
µν(x) = jν(x) . (2.135)
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2.5.3 Quantization of the Electromagnetic Field

We now limit ourselves to a free field, in the absence of external sources.
Then (135) reduces to

∂µF
µν = 0 , (2.136)

or, in terms of Aµ(x) now considered the fundamental variable, to

Aµ − ∂µ(∂·A) = 0 . (2.137)

This equation has a remarkable symmetry property, absent in the case of
massive vector fields: it is invariant to transformations defined by

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µΛ(x) , (2.138)

where Λ(x) is an arbitrary function of x . Here the field argument x is un-
changed, but the magnitude of each component is modified by an additive
quantity (a ‘gauge’) that depends on the space-time coordinates of the field.
Such a transformation is called a local gauge transformation. Invariance of
the field tensor can easily be proved:

F ′µν = ∂µA′ν − ∂νA′µ = ∂µ(Aν + ∂νΛ) − ∂ν(Aµ + ∂µΛ)

= ∂µAν − ∂νAµ = F µν , (2.139)

from which it follows that (137) is invariant. Saying that (137) is invariant
to transformations (138) means that whenever Aµ(x) is a solution to (137),
A′µ(x) is also a solution. Thus, the equation for Aµ does not have a single so-
lution but rather an infinite class of solutions related by (138). The situation
in fact is quite similar to what one finds in general relativity where Einstein’s
field equations, which are invariant to general coordinate transformations,
cannot determine by themselves the solution; to make the solution unique,
one has to specify the coordinate system in which the problem is to be solved.
In the present case, it corresponds to specifying the function Λ(x) , or as one
says, to choosing a gauge. Since this choice is not unique, the intermediate
steps in calculations may differ, depending on the gauge chosen. However,
since the physics described by the theory is invariant to gauge transforma-
tions, it must not depend on the gauge chosen for the calculation and the
final expression of any observable correctly calculated must be independent
of the function Λ .

To solve (137), one can proceed in two steps: first, a constraint is imposed
on the field to reduce the number of independent solutions from four to
three, and next, an appropriate function Λ(x) is chosen to fix the gauge, thus
reducing the number of independent solutions from three to two.

In the first step, a possible constraint is inspired by the condition (120)
for massive vector fields, which has the advantage of being covariant. With
this constraint (the Lorentz condition), the problem is reduced to solving

Aµ = 0 (field equation),

∂µA
µ = 0 (Lorentz condition) . (2.140)
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Even then, the field equation still remains invariant under a residual class
of gauge transformations defined by

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µΛ(x) ,

Λ = 0 . (2.141)

This means, if Aµ is solution to (140), then all A′µ = Aµ + ∂µΛ such that
Λ = 0 form a class of admissible solutions. The solution becomes unique

only by fixing Λ(x) .
A plane-wave solution to (140) has the form

Aµ(x) ≈ aµ(k) e−ik·x , (2.142)

together with the constraints

k2 = k0
2 − k

2 = 0 → ±k0 = |k| = ω ,

kµ aµ(k) = 0 . (2.143)

The condition k2 = 0 tells us that the quantum (photon) mass is zero, while
the second, k·a = 0 , lets us determine one component of aµ , say the time
component, in terms of the others:

k0a0(k) = k·a(k) → a0(k) = k̂·a(k) with k̂ ≡ k/|k | . (2.144)

So a0(k) is equal to the length of the longitudinal component of a:

a‖ = (a·k̂)k̂ . (2.145)

Suppose now that we have the solutions Aµ(x) of (140) and hence the
coefficients aµ(k) . Let us consider a particular solution to Λ = 0,

Λ(x) ≈ λ(k) e−ik·x , (2.146)

with the four-momentum kµ satisfying the same constraint, k2 = 0, as in
Aµ(x). The residual gauge transformation (141) now appears as

aµ(k)→ a′µ(k) = aµ(k) − ikµ λ(k) . (2.147)

Now choose the gauge such that

λ(k) = a0(k)/ik0 , (2.148)

which implies that the time component of the polarization vector, and hence
also the longitudinal component, vanishes: a′0(k) = 0 , a′

‖ = 0 . It follows

that a′µ(k) reduces to a spacelike vector lying in a plane perpendicular to k ;
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that is, it reduces to a three-vector a′ = a′
⊥ perpendicular to k . Hence it

can always be expressed in terms of two basis vectors spanning that plane:

k̂·e(k, λ) = 0, λ = 1, 2 . (2.149)

The polarization vector a(k) (with its prime accent suppressed) can now be
written in this basis as

a(k) =

2
∑

λ=1

a(k, λ)e(k, λ) ,

where a(k, 1) and a(k, 2) are scalar coefficients.

The three vectors e(k, 1), e(k, 2), and k̂ form a complete, orthonormal
basis in three-dimensional space, so that

2
∑

λ=1

ei∗(k, λ) ej(k, λ) = δij −
kikj

k
2 . (2.150)

The simplest choice consists of two real unit vectors orthogonal to each other
as well as to the propagation direction k ,

e(k, λ) · e(k, λ′) = δλλ′ ,

e(k, 1)× e(k, 2) = k̂ . (2.151)

These vectors represent transverse linear polarizations. If the z axis is chosen
to coincide with k , then e(k, 1) and e(k, 2) lie respectively along and in the
same sense as x̂ and ŷ (see Fig. 2.2). In an infinitesimal rotation (ẑ, δθ), they
transform according to (77), with Li = 0 and (Si)ab = −i εiab ,

δe(k, 1) = −ε12 e(k, 2) = δθ e(k, 2) ,

δe(k, 2) = +ε12 e(k, 1) = −δθ e(k, 1) . (2.152)

Another possible basis may include the complex vectors

e(k,±) = ∓ 1√
2

[e(k, 1)± ie(k, 2)] , (2.153)

which transform without mixing as the spherical components of vectors:

δe(k,±) = ∓i δθ e(k,±) , (2.154)

and therefore represent states of circular polarizations. They are associated
with the m = ±1 spin components, with the quantization axis chosen to
coincide with the propagation vector k . Since the longitudinal polarization
is absent, the m = 0 spin component is also absent. Thus, the massless
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Fig. 2.2. Relative orientations of the linear polarization vectors and the propaga-
tion vector

photon has only two orientations, one parallel and the other antiparallel to
the propagation vector.

The solution to (140) in the gauge thus chosen (called the Coulomb gauge),

A0(x) = 0 , ∇·A(x) = 0 , (2.155)

is therefore uniquely determined. It reads, with k = (ω = |k|, k),

A(x) =
∑

k

2
∑

λ=1

1
√

(2π)3 2ω

×
[

e(k, λ) a(k, λ) e−ik·x + e∗(k, λ) a†(k, λ) eik·x ] . (2.156)

As quantum fields, Ai(x) and its conjugate momentum Ȧi(x) obey the
canonical commutation relations at equal times

[Ai(t,x), Ȧj(t, y)] = i

∫

d3k

(2π)3

(

δij −
kikj

k
2

)

eik·(x−y) . (2.157)

The transversality of the field explains the presence of a ‘divergenceless’ δ-
function on the right-hand side. Ai(x) is a superposition of particle modes of
different momenta with two allowed polarizations represented by the creation
and annihilation operators, a(k, λ) and a†(k, λ) , which obey commutation re-
lations (127). The field is Hermitian, A† = A , because the particle associated
with it, the photon, has all generalized charges equal to 0.

By quantizing in Coulomb gauge (where A0 is constrained), we have lost
manifest Lorentz invariance; but since the Maxwell theory is Lorentz- and
gauge-invariant, the final physical results will be both Lorentz-covariant and
independent of gauge. Alternatively, we can quantize in the Lorentz gauge
(∂νA

ν = 0) by modifying the field equation, adding ∂µ(∂·A), and treating
A0 as a dynamical variable. The commutation relations for the fields will
appear in a more familiar form, [Aµ(t,x), Ȧν(t, y)] = −igµνδ(x − y), but
the extra minus sign in [A0, Ȧ0] indicates that the A0 generates a space of
indefinite metric. It turns out that quantization with constraints can be
more easily done in a functional integral formulation, especially in the case
of non-Abelian fields, as we will see in Chap. 15.
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2.5.4 Field Energy and Momentum

As an application, we may calculate the energy and momentum of the elec-
tromagnetic field, given by the classical expressions

H = 1
2

∫

d3x (E 2 + B 2) ,

P =

∫

d3x (E×B) . (2.158)

The same expressions remain valid in quantum mechanics, only with E and
B interpreted as operators. In the gauge chosen, the fields are

B = ∇×A =
∑

k,λ

Ck(ik× e(k, λ)) [a(k, λ)e−ik.x − a†(k, λ)eik·x] ,

E = −∂A
∂t

=
∑

k,λ

Ck iω e(k, λ) [a(k, λ)e−ik.x − a†(k, λ)eik·x] ,

with normalization constant Ck =
√

1/(2π)3 2ω and energy ω ≡ |k|. The
vectors e(k, λ) have been assumed, without loss in generality, to be real. The
final results are

H =
∑

k,λ

ω a†(k, λ)a(k, λ) ; (2.159)

P =
∑

k,λ

k a†(k, λ)a(k, λ) . (2.160)

It follows from (159) and (160) that the energy and momentum of the
one-photon state are

Ha†(k, λ) |0〉 = [H, a†(k, λ)] |0〉 = ω a†(k, λ) |0〉 ,
P a†(k, λ) |0〉 = [P , a†(k, λ)] |0〉 = k a†(k, λ) |0〉 .

Since |k|2 = ω2 , the photon is massless: (mass)2 = ω2 − |k|2 = 0 . The op-
erator a†(k, λ) creates a photon of energy ω , momentum k, and polarization
λ . The wave functions for a photon absorbed and a photon emitted at point
x are given by
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.....© k,λ−→< k, λ|Aµ(x)|0 > = e∗µ(k, λ)eik.x .
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2.6 The Action

In particle physics, one of the most useful theoretical tools is the Lagrangian,
more exactly the Lagrangian density. As it constitutes the complete definition
of the model, from which the dynamic field equations are generated, one can
incorporate into it from the beginning all the characteristics one wishes to
see emerge from the model.

2.6.1 The Euler–Lagrange Equation

In the Hamiltonian formulation of classical mechanics, the equations of mo-
tion of a system of particles can be derived from a certain function of the
generalized coordinates q(t) and velocities q̇(t) of the particles, called the
action,

S =

∫ t2

t1

dt L(q(t), q̇(t)) , (2.161)

where L is the Lagrange function. Hamilton’s minimum action principle holds
that, among all possible paths joining any two fixed points at times t1 and
t2 (t2 > t1), the path for which S is minimum corresponds to the physical
path that determines the actual motion of the particles. Thus, by varying
q → q + δq , subject to the constraint δq(t1) = δq(t2) = 0 , one gets

S → S + δS ,

δS =

∫ t2

t1

dt
(∂L

∂q
δq +

∂L

∂q̇
δq̇
)

. (2.162)

After an integration by part of the second term on the right-hand side, this
becomes

δS =

∫ t2

t1

dt
(∂L

∂q
− d

dt

∂L

∂q̇

)

δq +

∫ t2

t1

dt
d

dt

(∂L

∂q̇
δq
)

. (2.163)

The last term on the right-hand side vanishes because δq(t1) = δq(t2) = 0 .
The variation δq being arbitrary, it follows that the minimization condition
on δS implies the Euler–Lagrange equation of classical mechanics

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (Euler–Lagrange equation) . (2.164)

One may then introduce momentum p conjugate to coordinate q via

p = ∂L/∂q̇ , (2.165)

a relation that can be inverted to express q̇ in terms of p and q. The Hamil-
tonian is now defined by a Lagrange transformation as a function of the
dynamical variables p and q:

H = pq̇ − L , (2.166)
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When the situation is extended to a continuous distribution, as in field
theories, each generalized coordinate q(t) is replaced by a field, generically
called ϕ(t,x) , that represents a continuum of particles in space-time, and
each corresponding velocity q̇(t) by the four-derivative ∂µϕ . In a local field
theory the Lagrangian can be written as a spatial integral of a functional of
the field ϕ and its derivative ∂µϕ , called the Lagrangian density , L,

L =

∫

d3xL(ϕ, ∂µϕ) , (2.167)

and the action assumes the form

S =

∫ τ2

τ1

d4xL(ϕ, ∂µϕ) , (2.168)

where τ1 and τ2 represent the limiting surfaces of integration. As in classical
mechanics, L has the dimension of energy and S that of angular momentum.
In natural units, [S] = 1 and [L] = [E]4 . From now on we will refer to L
simply as the ‘Lagrangian’, with little risk of confusing it with L since the
latter function will scarcely reappear.

Now, in an arbitrary variation of the field

ϕ(x)→ ϕ′(x) = ϕ(x) + δ0ϕ(x) , (2.169)

such that δ0ϕ = 0 at the integration limits, the action changes S → S + δS
by an amount

δS =

∫ τ2

τ1

d4x
(∂L
∂ϕ

δ0ϕ +
∂L

∂(∂µϕ)
δ0(∂µϕ)

)

=

∫ τ2

τ1

d4x
(∂L
∂ϕ
− ∂µ

∂L
∂(∂µϕ)

)

δ0ϕ+

∫ τ2

τ1

d4x ∂µ

( ∂L
∂(∂µϕ)

δ0ϕ
)

. (2.170)

The second integral on the right-hand side vanishes because of the boundary
condition, δ0ϕ = 0 on the integration surfaces. Then the demand that S
be stationary for such an arbitrary variation δ0ϕ immediately implies the
Euler–Lagrange equation for the field ϕ :

∂L
∂ϕ
− ∂µ

∂L
∂(∂µϕ)

= 0 (Euler–Lagrange equation). (2.171)

This equation can be readily generalized to cases with several fields of arbi-
trary tensor characters. For each independent field component (ϕi), there is
an equation of the form (171). As a functional of the fields ϕi(x) and their
conjugate momentum densities, πi(x), the Hamiltonian density is given by

H(πi, ϕi) =
∑

i

(

πi
∂ϕi

∂t

)

− L , where πi =
∂L

∂ (∂ϕi/∂t)
. (2.172)
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How to find L ? If the equations of motion for a system are known, it is
always possible to find the corresponding Lagrangian. Let us consider the
three cases we have studied so far, and for each let us write down the dynamic
equations and the associated Lagrangian.

(a) Real scalar field:

( +m2)φ = −λ
6
φ3 ;

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 . (2.173)

The expression for the Lagrangian contains, in order, a kinematic term, a
mass term (for particle of mass m), and a self-interaction term (of coupling
constant λ). It can be checked that the Euler–Lagrange equation derived
from L coincides precisely with the dynamic equation given. As L has the
dimension of [E]4 , the field φ has dimension [E] , and the coupling constant
λ is dimensionless. The momentum density conjugate to φ is π ≡ ∂φ/∂t.
(b) Complex scalar field:

( +m2)φ = −2λφ(φ∗φ) , ( +m2)φ∗ = −2λφ∗(φ∗φ) ; (2.174)

L = ∂µφ
∗∂µφ−m2φ∗φ− λ(φ∗φ)2 . (2.175)

Note the absence of factors 1/2 in the present case; but with φ = 1√
2
(φ1+iφ2),

(175) will coincide with the Lagrangian for two real fields φ1 and φ2. The
momentum density conjugate to φ is π ≡ ∂φ∗/∂t.
(c) Real vector field:

∂µF
µν +m2Aν = jν , (2.176)

L = −1
4FµνF

µν + 1
2 m

2AµA
µ − jµAµ . (2.177)

The overall sign in L is conventional, and the sign of the mass term for the
physical degrees of freedom (spacelike components Ai) agrees with that found
in the scalar field case. The vector field has dimension [Aµ] = [E] . For each
component Aµ considered as an independent field, one gets

∂L
∂Aν

= m2Aν − jν ,

and then

∂µ
∂L

∂(∂µAν)
= −1

4
∂µ

∂

∂(∂µAν)
[(∂ρAσ − ∂σAρ)(∂

ρAσ − ∂σAρ)]

= −1

4
∂µ

∂

∂(∂µAν)
(2∂ρAσ∂

ρAσ − 2∂ρAσ∂
σAρ)

= −∂µ(∂µAν − ∂νAµ) = −∂µF
µν .
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Hence the Euler–Lagrange equations for Aν correctly reproduce the equations
of motion of the vector field.

On the other hand, if the dynamic equations are unknown, which is the
case most often encountered in practice and where the Lagrangian approach
turns out to be the most fruitful, one can construct the Lagrangian for the
model by imposing certain conditions, general enough for the model to be
useful, yet restrictive enough to make it well defined, even unique. The most
important conditions one may consider are
(a) L must be Hermitian, so that the Hamiltonian itself is Hermitian;
(b) it must be relativistically invariant, that is, invariant to space-time trans-

lations and Lorentz transformations;
(c) it should be invariant to other universal symmetries, but may break cer-

tain symmetries in some definite manner, as required by experiments;
(d) it could be limited so that it contains no space-time derivatives of fields

higher than the first (so that the field equations are at most of second
order), and so that it contains only local couplings built up from field
quantities evaluated at the same space-time point.

2.6.2 Conserved Current

The advantages of using a formalism based on the Lagrangian density L
become apparent when we want to study the implications of the symmetries
that the model described by L may have. In particular, it can be shown
that there is a close relationship between the invariance of the action in an
arbitrary continuous global transformation and the existence of a conserved

current . This important result is referred to as Noether’s theorem.
The symmetries of a model may be uncovered by studying the changes in

the Lagrangian or the action function that defines the model following trans-
formations on space-time coordinates or on internal variables. Leaving the
second class of symmetries for later chapters, we limit our discussion for now
to coordinate transformations. To begin, consider the following infinitesimal
coordinate transformations and their subsequent effects on the typical field:

xµ → x′µ = xµ + δxµ ,

ϕ(x)→ ϕ′(x′) = ϕ(x) + δϕ(x) . (2.178)

For example, for a translation, δxµ = −aµ , while for a Lorentz transforma-
tion, δxµ = εµν x

ν . Generally, δxµ may depend on coordinates even if the
transformation parameters are themselves constant.

The total variation of the field, δϕ(x) , may be determined by a series
expansion of ϕ′(x′):

δϕ(x) = ϕ′(x′)− ϕ(x)

= (ϕ′(x)− ϕ(x)) + (ϕ′(x′) − ϕ′(x))

≈ δ0ϕ(x) + δxµ ∂µϕ(x) . (2.179)
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It consists in general of a variation of the field due to its coordinate depen-
dence and of a variation specific to the functional structure of the field, δ0ϕ .
This variation is left arbitrary and, in particular, need not vanish on the
integration surfaces, in contrast to the situation where one wants to derive
the Euler–Lagrange equation. The action function, defined for an arbitrary
volume V , varies by an amount

δS =

∫

V

δ(d4x)L +

∫

V

d4x δL , (2.180)

in which the two terms arise from the variations of the integration volume
element and from the variations of the Lagrangian itself.

To calculate the variation δ(d4x) , consider the element of volume in the
transformed coordinates

d4x′ =

∣

∣

∣

∣

det(
∂x′µ

∂xν
)

∣

∣

∣

∣

d4x = |det[δµ
ν + ∂ν(δxµ)]| d4x

≈ [1 + ∂µ(δxµ)] d4x , (2.181)

which implies

δ(d4x) = (∂µ(δxµ)) d4x . (2.182)

The first term in (180) then becomes

∫

V

δ(d4x)L =

∫

V

d4x (∂µ(δxµ))L . (2.183)

In the second term of (180), the variation δL arises from both δx and δϕ ,
the latter coming from δx and δ0ϕ . The x variations of L as function of x
yield the quantity

∫

d4x (∂L/∂xµ)δxµ , while contributions from δ0ϕ are given
by the same expression as in (170), which includes two terms. If ϕ satisfies
the equation of motion (171), which is being assumed, the first term vanishes,
leaving only the second, nonzero term (which vanished there because of the
imposed boundary conditions). Therefore,

∫

V

d4x δL =

∫

V

d4x

[

(∂µL )δxµ + ∂µ

(

∂L
∂(∂µϕ)

δ0ϕ

)]

. (2.184)

Adding together both terms (183) and (184), we get for the total variation
of the action

δS =

∫

V

d4x ∂µ

(

∂L
∂(∂µϕ)

δ0ϕ + Lδxµ

)

. (2.185)

We are interested in global transformations, that is, those with constant
parameters. The corresponding infinitesimal transformations are defined by
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the small constant parameters δωa , with the values of the subscripts left un-
defined for now. Then invariance of S to a symmetry transformation defined
by δωa means that its variations in an arbitrary finite volume vanish:

∂S

∂ωa
≡
∫

V

d4x ∂µj
µ
a = 0 , (2.186)

for every value of a . Since this is true for an arbitrary volume, the integrand
itself vanishes, and so does the divergence:

∂µj
µ
a = 0 . (2.187)

The four-vector current introduced is shorthand for

jµ
a =

∂L
∂(∂µϕ)

δ0ϕ

δωa
+ Lδx

µ

δωa
. (2.188)

Note that contributions from variations of the coordinates and of the field
are well separated in the two terms. When L contains several fields ϕi for
i = 1, 2, . . . , all fields contribute to the current

jµ
a =

∂L
∂(∂µϕi)

δ0ϕi

δωa
+ L δx

µ

δωa
. (2.189)

The current conservation in (187) implies that the associated ‘charge’
defined by the space integral of the current time component

Qa ≡
∫

V

d3x j0a(t,x) (2.190)

is a constant of the motion, since

dQa

dt
=

∫

V

d3x ∂0 j
0
a =

∫

V

d3x (∂µj
µ
a −∇ · ja)

= −
∫

S

dS · ja = 0 , (2.191)

where use has been made of (187) and of Gauss’s theorem. In the last step
it is assumed that j = 0 on the surface of integration.

In summary, when the action function is invariant to a continuous symme-
try transformation of the coordinates and of the fields involved in the model,
a locally conserved density current and a conserved (constant in time) charge
associated with the symmetry can be defined. In other words, if the fields
or the different components of each of the tensor fields describing the model
can be transformed among themselves without changing the physical content
of the fields and their interactions, the system possesses a symmetry, and
this symmetry implies well-defined conserved quantities. This result, due to
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Emmy Noether, makes mathematically precise the relationship between the
symmetries of a system and the existence of conserved quantum numbers,
and therefore, between dynamics and conservation laws. In the examples
that follow, we consider, for simplicity, free fields. But it must be kept in
mind that Noether’s theorem may be applied to general situations, classical
or quantized, with or without interactions.

Example 2.4 Translation of a Generic Field

Consider the translation xµ → x′µ = xµ − δaµ . It implies the following
variations:

δxµ = −δaµ , δ0ϕ = δaµ ∂µϕ ;

δωa ≡ δaµ ,

which then give

δxµ

δaν
= −δµ

ν,
δ0ϕ

δaν
= ∂νϕ .

If the action for a generic field ϕ(x) is invariant to space-time translations,
the conserved current and charge associated with this invariance are

jµ
ν ≡ T µ

ν =

(

∂L
∂(∂µϕ)

)

∂νϕ− δµ
ν L , (2.192)

Pν ≡ T 0
ν =

∫

d3x T 0
ν . (2.193)

It turns out that the current, T µ
ν , is the energy-momentum tensor of the

system and the charge, Pν , is the energy-momentum vector. In particular,
the energy of the field can be identified with P0 :

P0 = H =

∫

d3x (πϕ̇ −L) , (2.194)

where the velocity and momentum conjugates to the field are

ϕ̇ = ∂0ϕ and π = ∂L/∂ϕ̇ ,

in agreement with the classical relation (166).

Example 2.5 Lorentz Transformation of a Real Scalar Field

In this case, the variations are

δxµ = εµν x
ν = εµν xν ; δ0φ = − i

2
εµν Lµν φ .

Letting δωa ≡ ερσ , we obtain the derivatives

δxµ

δερσ
= δµ

ρ xσ − δµ
σ xρ ,

δ0φ

δερσ
= −iLρσφ = (xρ ∂σ − xσ ∂ρ)φ .
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The Lagrangian for a scalar field being given Lorentz-invariant, we can imme-
diately deduce the associated current (called the angular momentum density
tensor)

jµ
ρσ ≡Mµ

ρσ = xρ T µ
σ − xσ T µ

ρ , (2.195)

and the corresponding conserved charge (or angular momentum)

Qρσ ≡Mρσ =

∫

d3xM0
ρσ . (2.196)

The space components of Qρσ give the familiar angular momentum

Mij =

∫

d3x (xiPj − xjPi) , (2.197)

where Pi = T 0
i is the momentum density of the field.

Example 2.6 Internal Transformation of a Complex Scalar Field

We consider here an example of transformation on internal space. In such a
transformation, space-time coordinates are not affected, δxµ = 0 , only the
fields vary, δφ = δ0φ 6= 0. As an example of physical interest, consider the
Lagrangian for a free complex scalar field (175). It is clearly invariant to the
phase transformations

φ → φ′ = e−iαφ ≈ φ− iαφ ,

φ∗ → φ′∗ = eiαφ∗ ≈ φ∗ + iαφ∗ , (2.198)

where α is a real constant. Posing δω ≡ δα , one gets the derivatives

δ0φ

δα
= −iφ ,

δ0φ
∗

δα
= iφ∗ , (2.199)

and subsequently the associated current and charge

jµ = i

(

∂L
∂(∂µφ∗)

φ∗ − ∂L
∂(∂µφ)

φ

)

, (2.200)

Q = i

∫

d3x

(

∂L
∂(∂0φ∗)

φ∗ − ∂L
∂(∂0φ)

φ

)

. (2.201)

Thus, the Noether current associated with the phase invariance is identical
to the charge current density postulated in Sect. 2.4.2.
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Problems

2.1 Spin of π0 meson. (a) Show that two real photons in the reference
frame of their center-of-mass (where the total momentum is zero) cannot be
in a state of angular momentum 1 . Your proof will be based on rotational
invariance, Bose statistics, the transversality of photons, and the superposi-
tion principle (which says that the state of two photons is a homogeneous
linear function of their polarization vectors).
(b) The π0 meson decays mainly through the channel π0 → 2γ . Show that
if angular momentum is conserved, the π0 spin cannot be 1 (it is known now
that its spin is 0).
(c) Given that the π0 spin is 0, show that in the rest frame of π0 , the two
photons emitted in the decay have the same polarization.

2.2 Spin of K0 meson. The mode K0 → 2π0 accounts for 31% of all
K0 meson decays. Given that π0 spin is 0, show that the K0 spin is an even
number (in h̄ units). We now know that its spin is 0.

2.3 Dilation. Consider the Lagrangian for a real scalar field φ(x) in
four-space-time,

L =
1

2
(∂φ)2 − 1

2
m2φ2 − 1

4!
gφ4 .

Under a scale transformation, x′ = λ−1x and φ′(x) = exp[D lnλ]φ(λx), (with
λ > 0). Show that the action is invariant when D = 1 and m = 0, with the
field satisfying the equation of motion.

2.4 Angular momentum of the electromagnetic field. Consider
an electromagnetic field in a region where the sources are absent. In an
infinitesimal Lorentz transformation (cf. Sect. 2.3) the variations are defined
by

δxµ = εµν x
ν ,

δ0A
α(x) = − i

2
εµν (Lµν + Σµν)Aα(x) .

(a) Show that the density of the energy-momentum tensor is given by

T µ
ν = −F µλ∂νAλ + δµ

ν
1

4
FρσF

ρσ,

and that the density of the angular momentum tensor is given by

Mµ
ρσ = xρT µ

σ − xσT µ
ρ − F µλ(gλρAσ − gλσAρ) .

(b) The intrinsic spin of the field is defined by

Si =
1

2
εijkSjk ,
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where

Sjk =

∫

d3xM0
jk = −

∫

d3x (ȦjAk − ȦkAj) .

Prove that

S = −i
∑

k

k̂ [a†(k, 1)a(k, 2) − a†(k, 2)a(k, 1)]

=
∑

k

k̂ [a†(k,+)a(k,+) − a†(k,−)a(k,−)]

and hence, with S‖ ≡ S · k̂ ,

[S‖, a
†(k,±)] = ±a†(k,±) ,

where a(k, λ) and a†(k, λ) are defined in Sect. 2.5.3.
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